addForbiddenArc(const Arc &arc) | gum::learning::genericBNLearner | |
addForbiddenArc(const NodeId tail, const NodeId head) | gum::learning::genericBNLearner | |
addForbiddenArc(const std::string &tail, const std::string &head) | gum::learning::genericBNLearner | |
addMandatoryArc(const Arc &arc) | gum::learning::genericBNLearner | |
addMandatoryArc(const NodeId tail, const NodeId head) | gum::learning::genericBNLearner | |
addMandatoryArc(const std::string &tail, const std::string &head) | gum::learning::genericBNLearner | |
addPossibleEdge(const Edge &edge) | gum::learning::genericBNLearner | |
addPossibleEdge(const NodeId tail, const NodeId head) | gum::learning::genericBNLearner | |
addPossibleEdge(const std::string &tail, const std::string &head) | gum::learning::genericBNLearner | |
AlgoType enum name | gum::learning::genericBNLearner | |
ApproximationSchemeSTATE enum name | gum::IApproximationSchemeConfiguration | |
apriori__ | gum::learning::genericBNLearner | protected |
apriori_database__ | gum::learning::genericBNLearner | protected |
apriori_dbname__ | gum::learning::genericBNLearner | protected |
apriori_type__ | gum::learning::genericBNLearner | protected |
apriori_weight__ | gum::learning::genericBNLearner | protected |
AprioriType enum name | gum::learning::genericBNLearner | |
checkFileName__(const std::string &filename) | gum::learning::genericBNLearner | protectedstatic |
checkScoreAprioriCompatibility() | gum::learning::genericBNLearner | |
chi2(const NodeId id1, const NodeId id2, const std::vector< NodeId > &knowing={}) | gum::learning::genericBNLearner | |
chi2(const std::string &name1, const std::string &name2, const std::vector< std::string > &knowing={}) | gum::learning::genericBNLearner | |
clearDatabaseRanges() | gum::learning::genericBNLearner | |
constraint_ForbiddenArcs__ | gum::learning::genericBNLearner | protected |
constraint_Indegree__ | gum::learning::genericBNLearner | protected |
constraint_MandatoryArcs__ | gum::learning::genericBNLearner | protected |
constraint_PossibleEdges__ | gum::learning::genericBNLearner | protected |
constraint_SliceOrder__ | gum::learning::genericBNLearner | protected |
constraint_TabuList__ | gum::learning::genericBNLearner | protected |
createApriori__() | gum::learning::genericBNLearner | protected |
createCorrectedMutualInformation__() | gum::learning::genericBNLearner | protected |
createParamEstimator__(DBRowGeneratorParser<> &parser, bool take_into_account_score=true) | gum::learning::genericBNLearner | protected |
createScore__() | gum::learning::genericBNLearner | protected |
current_algorithm__ | gum::learning::genericBNLearner | protected |
currentTime() const | gum::learning::genericBNLearner | inlinevirtual |
Dag2BN__ | gum::learning::genericBNLearner | protected |
database() const | gum::learning::genericBNLearner | |
databaseRanges() const | gum::learning::genericBNLearner | |
databaseWeight() const | gum::learning::genericBNLearner | |
disableEpsilon() | gum::learning::genericBNLearner | inlinevirtual |
disableMaxIter() | gum::learning::genericBNLearner | inlinevirtual |
disableMaxTime() | gum::learning::genericBNLearner | inlinevirtual |
disableMinEpsilonRate() | gum::learning::genericBNLearner | inlinevirtual |
distributeProgress(const ApproximationScheme *approximationScheme, Size pourcent, double error, double time) | gum::learning::genericBNLearner | inline |
distributeStop(const ApproximationScheme *approximationScheme, std::string message) | gum::learning::genericBNLearner | inline |
domainSize(NodeId var) const | gum::learning::genericBNLearner | |
domainSize(const std::string &var) const | gum::learning::genericBNLearner | |
domainSizes() const | gum::learning::genericBNLearner | |
EMepsilon__ | gum::learning::genericBNLearner | protected |
enableEpsilon() | gum::learning::genericBNLearner | inlinevirtual |
enableMaxIter() | gum::learning::genericBNLearner | inlinevirtual |
enableMaxTime() | gum::learning::genericBNLearner | inlinevirtual |
enableMinEpsilonRate() | gum::learning::genericBNLearner | inlinevirtual |
epsilon() const | gum::learning::genericBNLearner | inlinevirtual |
eraseForbiddenArc(const Arc &arc) | gum::learning::genericBNLearner | |
eraseForbiddenArc(const NodeId tail, const NodeId head) | gum::learning::genericBNLearner | |
eraseForbiddenArc(const std::string &tail, const std::string &head) | gum::learning::genericBNLearner | |
eraseMandatoryArc(const Arc &arc) | gum::learning::genericBNLearner | |
eraseMandatoryArc(const NodeId tail, const NodeId head) | gum::learning::genericBNLearner | |
eraseMandatoryArc(const std::string &tail, const std::string &head) | gum::learning::genericBNLearner | |
erasePossibleEdge(const Edge &edge) | gum::learning::genericBNLearner | |
erasePossibleEdge(const NodeId tail, const NodeId head) | gum::learning::genericBNLearner | |
erasePossibleEdge(const std::string &tail, const std::string &head) | gum::learning::genericBNLearner | |
G2(const NodeId id1, const NodeId id2, const std::vector< NodeId > &knowing={}) | gum::learning::genericBNLearner | |
G2(const std::string &name1, const std::string &name2, const std::vector< std::string > &knowing={}) | gum::learning::genericBNLearner | |
genericBNLearner(const std::string &filename, const std::vector< std::string > &missing_symbols) | gum::learning::genericBNLearner | |
genericBNLearner(const DatabaseTable<> &db) | gum::learning::genericBNLearner | |
genericBNLearner(const std::string &filename, const gum::BayesNet< GUM_SCALAR > &src, const std::vector< std::string > &missing_symbols) | gum::learning::genericBNLearner | |
genericBNLearner(const genericBNLearner &) | gum::learning::genericBNLearner | |
genericBNLearner(genericBNLearner &&) | gum::learning::genericBNLearner | |
getAprioriType__() const | gum::learning::genericBNLearner | protected |
greedy_hill_climbing__ | gum::learning::genericBNLearner | protected |
hasMissingValues() const | gum::learning::genericBNLearner | |
history() const | gum::learning::genericBNLearner | inlinevirtual |
IApproximationSchemeConfiguration() | gum::IApproximationSchemeConfiguration | |
idFromName(const std::string &var_name) const | gum::learning::genericBNLearner | |
initial_dag__ | gum::learning::genericBNLearner | protected |
isEnabledEpsilon() const | gum::learning::genericBNLearner | inlinevirtual |
isEnabledMaxIter() const | gum::learning::genericBNLearner | inlinevirtual |
isEnabledMaxTime() const | gum::learning::genericBNLearner | inlinevirtual |
isEnabledMinEpsilonRate() const | gum::learning::genericBNLearner | inlinevirtual |
K2__ | gum::learning::genericBNLearner | protected |
kmode_3off2__ | gum::learning::genericBNLearner | protected |
latentVariables() const | gum::learning::genericBNLearner | |
learnDAG() | gum::learning::genericBNLearner | |
learnDAG__() | gum::learning::genericBNLearner | protected |
learnMixedStructure() | gum::learning::genericBNLearner | |
local_search_with_tabu_list__ | gum::learning::genericBNLearner | protected |
logLikelihood(const std::vector< NodeId > &vars, const std::vector< NodeId > &knowing={}) | gum::learning::genericBNLearner | |
logLikelihood(const std::vector< std::string > &vars, const std::vector< std::string > &knowing={}) | gum::learning::genericBNLearner | |
maxIter() const | gum::learning::genericBNLearner | inlinevirtual |
maxTime() const | gum::learning::genericBNLearner | inlinevirtual |
messageApproximationScheme() const | gum::IApproximationSchemeConfiguration | |
miic_3off2__ | gum::learning::genericBNLearner | protected |
minEpsilonRate() const | gum::learning::genericBNLearner | inlinevirtual |
mutual_info__ | gum::learning::genericBNLearner | protected |
nameFromId(NodeId id) const | gum::learning::genericBNLearner | |
names() const | gum::learning::genericBNLearner | |
nbCols() const | gum::learning::genericBNLearner | |
nbrIterations() const | gum::learning::genericBNLearner | inlinevirtual |
nbRows() const | gum::learning::genericBNLearner | |
no_apriori__ | gum::learning::genericBNLearner | protected |
onProgress | gum::IApproximationSchemeConfiguration | |
onStop | gum::IApproximationSchemeConfiguration | |
operator=(const genericBNLearner &) | gum::learning::genericBNLearner | |
operator=(genericBNLearner &&) | gum::learning::genericBNLearner | |
param_estimator_type__ | gum::learning::genericBNLearner | protected |
ParamEstimatorType enum name | gum::learning::genericBNLearner | |
periodSize() const | gum::learning::genericBNLearner | inlinevirtual |
prepare_miic_3off2__() | gum::learning::genericBNLearner | protected |
ranges__ | gum::learning::genericBNLearner | protected |
rawPseudoCount(const std::vector< NodeId > &vars) | gum::learning::genericBNLearner | |
rawPseudoCount(const std::vector< std::string > &vars) | gum::learning::genericBNLearner | |
readFile__(const std::string &filename, const std::vector< std::string > &missing_symbols) | gum::learning::genericBNLearner | protectedstatic |
recordWeight(const std::size_t i) const | gum::learning::genericBNLearner | |
score__ | gum::learning::genericBNLearner | protected |
score_database__ | gum::learning::genericBNLearner | protected |
score_type__ | gum::learning::genericBNLearner | protected |
ScoreType enum name | gum::learning::genericBNLearner | |
selected_algo__ | gum::learning::genericBNLearner | protected |
setAprioriWeight__(double weight) | gum::learning::genericBNLearner | |
setCurrentApproximationScheme(const ApproximationScheme *approximationScheme) | gum::learning::genericBNLearner | inline |
setDatabaseWeight(const double new_weight) | gum::learning::genericBNLearner | |
setEpsilon(double eps) | gum::learning::genericBNLearner | inlinevirtual |
setForbiddenArcs(const ArcSet &set) | gum::learning::genericBNLearner | |
setInitialDAG(const DAG &) | gum::learning::genericBNLearner | |
setMandatoryArcs(const ArcSet &set) | gum::learning::genericBNLearner | |
setMaxIndegree(Size max_indegree) | gum::learning::genericBNLearner | |
setMaxIter(Size max) | gum::learning::genericBNLearner | inlinevirtual |
setMaxTime(double timeout) | gum::learning::genericBNLearner | inlinevirtual |
setMinEpsilonRate(double rate) | gum::learning::genericBNLearner | inlinevirtual |
setPeriodSize(Size p) | gum::learning::genericBNLearner | inlinevirtual |
setPossibleEdges(const EdgeSet &set) | gum::learning::genericBNLearner | |
setPossibleSkeleton(const UndiGraph &skeleton) | gum::learning::genericBNLearner | |
setRecordWeight(const std::size_t i, const double weight) | gum::learning::genericBNLearner | |
setSliceOrder(const NodeProperty< NodeId > &slice_order) | gum::learning::genericBNLearner | |
setSliceOrder(const std::vector< std::vector< std::string > > &slices) | gum::learning::genericBNLearner | |
setVerbosity(bool v) | gum::learning::genericBNLearner | inlinevirtual |
stateApproximationScheme() const | gum::learning::genericBNLearner | inlinevirtual |
use3off2() | gum::learning::genericBNLearner | |
useAprioriBDeu(double weight=1) | gum::learning::genericBNLearner | |
useAprioriDirichlet(const std::string &filename, double weight=1) | gum::learning::genericBNLearner | |
useAprioriSmoothing(double weight=1) | gum::learning::genericBNLearner | |
useCrossValidationFold(const std::size_t learning_fold, const std::size_t k_fold) | gum::learning::genericBNLearner | |
useDatabaseRanges(const std::vector< std::pair< std::size_t, std::size_t >, XALLOC< std::pair< std::size_t, std::size_t > > > &new_ranges) | gum::learning::genericBNLearner | |
useEM(const double epsilon) | gum::learning::genericBNLearner | |
useGreedyHillClimbing() | gum::learning::genericBNLearner | |
useK2(const Sequence< NodeId > &order) | gum::learning::genericBNLearner | |
useK2(const std::vector< NodeId > &order) | gum::learning::genericBNLearner | |
useLocalSearchWithTabuList(Size tabu_size=100, Size nb_decrease=2) | gum::learning::genericBNLearner | |
useMDL() | gum::learning::genericBNLearner | |
useMIIC() | gum::learning::genericBNLearner | |
useNML() | gum::learning::genericBNLearner | |
useNoApriori() | gum::learning::genericBNLearner | |
useNoCorr() | gum::learning::genericBNLearner | |
useScoreAIC() | gum::learning::genericBNLearner | |
useScoreBD() | gum::learning::genericBNLearner | |
useScoreBDeu() | gum::learning::genericBNLearner | |
useScoreBIC() | gum::learning::genericBNLearner | |
useScoreK2() | gum::learning::genericBNLearner | |
useScoreLog2Likelihood() | gum::learning::genericBNLearner | |
verbosity() const | gum::learning::genericBNLearner | inlinevirtual |
~genericBNLearner() | gum::learning::genericBNLearner | virtual |
~IApproximationSchemeConfiguration() | gum::IApproximationSchemeConfiguration | |