aGrUM  0.20.2
a C++ library for (probabilistic) graphical models
importanceSampling_tpl.h
Go to the documentation of this file.
1 /**
2  *
3  * Copyright 2005-2020 Pierre-Henri WUILLEMIN(@LIP6) & Christophe GONZALES(@AMU)
4  * info_at_agrum_dot_org
5  *
6  * This library is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU Lesser General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public License
17  * along with this library. If not, see <http://www.gnu.org/licenses/>.
18  *
19  */
20 
21 
22 /**
23  * @file
24  * @brief Implementation of Importance Sampling for inference in Bayesian networks.
25  *
26  * @author Paul ALAM & Pierre-Henri WUILLEMIN(@LIP6)
27  */
28 
29 
30 #include <agrum/BN/inference/importanceSampling.h>
31 
32 
33 namespace gum {
34 
35  /// default constructor
36  template < typename GUM_SCALAR >
37  ImportanceSampling< GUM_SCALAR >::ImportanceSampling(
38  const IBayesNet< GUM_SCALAR >* bn) :
39  SamplingInference< GUM_SCALAR >(bn) {
40  GUM_CONSTRUCTOR(ImportanceSampling);
41  }
42 
43 
44  /// destructor
45  template < typename GUM_SCALAR >
48  }
49 
50  /// no burn in needed for Importance sampling
51  template < typename GUM_SCALAR >
54  return I;
55  }
56 
57  template < typename GUM_SCALAR >
61 
62  do {
63  prev.clear();
64  pSurQ = 1.;
65  for (const auto ev: this->hardEvidenceNodes()) {
66  prev.add(this->BN().variable(ev));
67  prev.chgVal(this->BN().variable(ev), this->hardEvidence()[ev]);
68  }
69 
70  for (const auto nod: this->BN().topologicalOrder()) {
71  if (!this->hasHardEvidence(nod)) { this->addVarSample_(nod, &prev); }
72  auto probaP = this->BN().cpt(nod).get(prev);
73  auto probaQ = this->samplingBN().cpt(nod).get(prev);
74  if ((probaP == 0) || (probaQ == 0)) {
75  pSurQ = 0;
76  } else {
77  pSurQ = probaP / probaQ;
78  }
79  }
80  if (pSurQ > 0.0) {
81  for (const auto ev: this->hardEvidenceNodes()) {
82  pSurQ *= this->samplingBN().cpt(ev).get(prev);
83  }
84  }
85  } while (pSurQ == 0);
86 
87  *w = pSurQ;
88  return prev;
89  }
90 
91 
92  template < typename GUM_SCALAR >
95  float epsilon) {
96  for (const auto nod: bn->nodes().asNodeSet()) {
97  auto p = bn->cpt(nod).isNonZeroMap().scale(epsilon) + bn->cpt(nod);
98  p.normalizeAsCPT();
99  bn->installCPT(nod, p);
100  }
101  }
102 
103  template < typename GUM_SCALAR >
106  for (const auto ev: this->hardEvidenceNodes()) {
107  bn->uninstallCPT(ev);
108  bn->installCPT(ev, *(this->evidence()[ev]));
109  // we keep the variables with hard evidence but alone
110  // bn->uninstallNode( sid[i] );
111  }
114  if (minParam < minAccepted) this->unsharpenBN_(bn, float(minAccepted));
115  }
116 } // namespace gum
INLINE void emplace(Args &&... args)
Definition: set_tpl.h:669