aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
Scores A Priori
+ Collaboration diagram for Scores A Priori:

Detailed Description

Classes

class  gum::learning::Apriori< ALLOC >
 the base class for all a priori More...
 
class  gum::learning::AprioriBDeu< ALLOC >
 the internal apriori for the BDeu score (N' / (r_i * q_i)BDeu is a BD score with a N'/(r_i * q_i) apriori, where N' is an effective sample size and r_i is the domain size of the target variable and q_i is the domain size of the Cartesian product of its parents. More...
 
class  gum::learning::AprioriDirichletFromDatabase< ALLOC >
 A dirichlet priori: computes its N'_ijk from a database. More...
 
class  gum::learning::AprioriK2< ALLOC >
 the internal apriori for the K2 score = Laplace AprioriK2 is a BD score with a Laplace apriori (i.e., a smoothing of 1). More...
 
class  gum::learning::AprioriNoApriori< ALLOC >
 the no a priori class: corresponds to 0 weight-sample More...
 
class  gum::learning::AprioriSmoothing< ALLOC >
 the smooth a priori: adds a weight w to all the countings More...