![]() |
aGrUM
0.20.3
a C++ library for (probabilistic) graphical models
|
This is the complete list of members for gum::learning::ScoreK2< ALLOC >, including all inherited members.
allocator_type typedef | gum::learning::ScoreK2< ALLOC > | |
apriori_ | gum::learning::Score< ALLOC > | protected |
cache_ | gum::learning::Score< ALLOC > | protected |
clear() | gum::learning::Score< ALLOC > | |
clearCache() | gum::learning::Score< ALLOC > | |
clearRanges() | gum::learning::Score< ALLOC > | |
clone() const | gum::learning::ScoreK2< ALLOC > | virtual |
clone(const allocator_type &alloc) const | gum::learning::ScoreK2< ALLOC > | virtual |
counter_ | gum::learning::Score< ALLOC > | protected |
database() const | gum::learning::Score< ALLOC > | |
empty_ids_ | gum::learning::Score< ALLOC > | protected |
getAllocator() const | gum::learning::Score< ALLOC > | |
internalApriori() const final | gum::learning::ScoreK2< ALLOC > | virtual |
isAprioriCompatible() const final | gum::learning::ScoreK2< ALLOC > | virtual |
isAprioriCompatible(const std::string &apriori_type, double weight=1.0f) | gum::learning::ScoreK2< ALLOC > | static |
isAprioriCompatible(const Apriori< ALLOC > &apriori) | gum::learning::ScoreK2< ALLOC > | static |
isUsingCache() const | gum::learning::Score< ALLOC > | |
marginalize_(const NodeId X_id, const std::vector< double, ALLOC< double > > &N_xyz) const | gum::learning::Score< ALLOC > | protected |
minNbRowsPerThread() const | gum::learning::Score< ALLOC > | virtual |
nbThreads() const | gum::learning::Score< ALLOC > | virtual |
nodeId2Columns() const | gum::learning::Score< ALLOC > | |
one_log2_ | gum::learning::Score< ALLOC > | protected |
operator=(const ScoreK2< ALLOC > &from) | gum::learning::ScoreK2< ALLOC > | |
operator=(ScoreK2< ALLOC > &&from) | gum::learning::ScoreK2< ALLOC > | |
gum::learning::Score::operator=(const Score< ALLOC > &from) | gum::learning::Score< ALLOC > | protected |
gum::learning::Score::operator=(Score< ALLOC > &&from) | gum::learning::Score< ALLOC > | protected |
ranges() const | gum::learning::Score< ALLOC > | |
score(const NodeId var) | gum::learning::Score< ALLOC > | |
score(const NodeId var, const std::vector< NodeId, ALLOC< NodeId > > &rhs_ids) | gum::learning::Score< ALLOC > | |
Score(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &external_apriori, const std::vector< std::pair< std::size_t, std::size_t >, ALLOC< std::pair< std::size_t, std::size_t > > > &ranges, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type()) | gum::learning::Score< ALLOC > | |
Score(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &external_apriori, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type()) | gum::learning::Score< ALLOC > | |
Score(const Score< ALLOC > &from) | gum::learning::Score< ALLOC > | protected |
Score(const Score< ALLOC > &from, const allocator_type &alloc) | gum::learning::Score< ALLOC > | protected |
Score(Score< ALLOC > &&from) | gum::learning::Score< ALLOC > | protected |
Score(Score< ALLOC > &&from, const allocator_type &alloc) | gum::learning::Score< ALLOC > | protected |
score_(const IdCondSet< ALLOC > &idset) final | gum::learning::ScoreK2< ALLOC > | protectedvirtual |
ScoreK2(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &apriori, const std::vector< std::pair< std::size_t, std::size_t >, ALLOC< std::pair< std::size_t, std::size_t > > > &ranges, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type()) | gum::learning::ScoreK2< ALLOC > | |
ScoreK2(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &apriori, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type()) | gum::learning::ScoreK2< ALLOC > | |
ScoreK2(const ScoreK2< ALLOC > &from) | gum::learning::ScoreK2< ALLOC > | |
ScoreK2(const ScoreK2< ALLOC > &from, const allocator_type &alloc) | gum::learning::ScoreK2< ALLOC > | |
ScoreK2(ScoreK2< ALLOC > &&from) | gum::learning::ScoreK2< ALLOC > | |
ScoreK2(ScoreK2< ALLOC > &&from, const allocator_type &alloc) | gum::learning::ScoreK2< ALLOC > | |
setMaxNbThreads(std::size_t nb) const | gum::learning::Score< ALLOC > | virtual |
setMinNbRowsPerThread(const std::size_t nb) const | gum::learning::Score< ALLOC > | virtual |
setRanges(const std::vector< std::pair< std::size_t, std::size_t >, XALLOC< std::pair< std::size_t, std::size_t > > > &new_ranges) | gum::learning::Score< ALLOC > | |
use_cache_ | gum::learning::Score< ALLOC > | protected |
useCache(const bool on_off) | gum::learning::Score< ALLOC > | |
~Score() | gum::learning::Score< ALLOC > | virtual |
~ScoreK2() | gum::learning::ScoreK2< ALLOC > | virtual |