aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
structuralConstraintPossibleEdges.cpp
Go to the documentation of this file.
1 /**
2  *
3  * Copyright (c) 2005-2021 by Pierre-Henri WUILLEMIN(@LIP6) & Christophe GONZALES(@AMU)
4  * info_at_agrum_dot_org
5  *
6  * This library is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU Lesser General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public License
17  * along with this library. If not, see <http://www.gnu.org/licenses/>.
18  *
19  */
20 
21 
22 /** @file
23  * @brief the structural constraint for forbidding the creation of some arcs
24  * during structure learning
25  *
26  * @author Christophe GONZALES(@AMU) and Pierre-Henri WUILLEMIN(@LIP6)
27  */
28 
29 #include <agrum/BN/learning/constraints/structuralConstraintPossibleEdges.h>
30 
31 /// include the inlined functions if necessary
32 #ifdef GUM_NO_INLINE
33 # include <agrum/BN/learning/constraints/structuralConstraintPossibleEdges_inl.h>
34 #endif /* GUM_NO_INLINE */
35 
36 namespace gum {
37 
38  namespace learning {
39 
40  /// default constructor
43  }
44 
45  /// constructor starting with a given graph
47  setGraph(graph);
49  }
50 
51  /// copy constructor
56  }
57 
58  /// move constructor
63  }
64 
65  /// destructor
68  }
69 
70  /// copy operator
74  return *this;
75  }
76 
77  /// move operator
80  if (this != &from) {
82  }
83  return *this;
84  }
85 
86  } /* namespace learning */
87 
88 } /* namespace gum */
INLINE void emplace(Args &&... args)
Definition: set_tpl.h:643
Database(const std::string &filename, const BayesNet< GUM_SCALAR > &bn, const std::vector< std::string > &missing_symbols)