aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
gum::learning::DBRow< T_DATA, ALLOC > Member List

This is the complete list of members for gum::learning::DBRow< T_DATA, ALLOC >, including all inherited members.

allocator_type typedefgum::learning::DBRow< T_DATA, ALLOC >
clone() constgum::learning::DBRow< T_DATA, ALLOC >
clone(const ALLOC< T_DATA > &alloc) constgum::learning::DBRow< T_DATA, ALLOC >
DBRow classgum::learning::DBRow< T_DATA, ALLOC >friend
DBRow()gum::learning::DBRow< T_DATA, ALLOC >
DBRow(const ALLOC< T_DATA > &alloc)gum::learning::DBRow< T_DATA, ALLOC >
DBRow(const std::size_t size, const double weight=1.0, const ALLOC< T_DATA > &alloc=ALLOC< T_DATA >())gum::learning::DBRow< T_DATA, ALLOC >
DBRow(const std::size_t size, const T_DATA default_value, const double weight, const ALLOC< T_DATA > &alloc=ALLOC< T_DATA >())gum::learning::DBRow< T_DATA, ALLOC >
DBRow(std::initializer_list< T_DATA > list, const double weight=1.0, const ALLOC< T_DATA > &alloc=ALLOC< T_DATA >())gum::learning::DBRow< T_DATA, ALLOC >
DBRow(const std::vector< T_DATA, OTHER_ALLOC< T_DATA > > &cells, const double weight=1.0, const ALLOC< T_DATA > &alloc=ALLOC< T_DATA >())gum::learning::DBRow< T_DATA, ALLOC >
DBRow(std::vector< T_DATA, ALLOC< T_DATA > > &&cells, const double weight=1.0, const ALLOC< T_DATA > &alloc=ALLOC< T_DATA >())gum::learning::DBRow< T_DATA, ALLOC >
DBRow(const DBRow< T_DATA, ALLOC > &from)gum::learning::DBRow< T_DATA, ALLOC >
DBRow(const DBRow< T_DATA, ALLOC > &from, const ALLOC< T_DATA > &alloc)gum::learning::DBRow< T_DATA, ALLOC >
DBRow(DBRow< T_DATA, ALLOC > &&from)gum::learning::DBRow< T_DATA, ALLOC >
DBRow(DBRow< T_DATA, ALLOC > &&from, const ALLOC< T_DATA > &alloc)gum::learning::DBRow< T_DATA, ALLOC >
getAllocator() constgum::learning::DBRow< T_DATA, ALLOC >
operator=(const DBRow< T_DATA, ALLOC > &from)gum::learning::DBRow< T_DATA, ALLOC >
operator=(DBRow< T_DATA, ALLOC > &&from)gum::learning::DBRow< T_DATA, ALLOC >
operator[](const std::size_t i)gum::learning::DBRow< T_DATA, ALLOC >
operator[](const std::size_t i) constgum::learning::DBRow< T_DATA, ALLOC >
pushBack(const T_DATA &elt)gum::learning::DBRow< T_DATA, ALLOC >
pushBack(T_DATA &&elt)gum::learning::DBRow< T_DATA, ALLOC >
reserve(const std::size_t new_size)gum::learning::DBRow< T_DATA, ALLOC >
resize(const std::size_t new_size)gum::learning::DBRow< T_DATA, ALLOC >
row() const noexceptgum::learning::DBRow< T_DATA, ALLOC >
row() noexceptgum::learning::DBRow< T_DATA, ALLOC >
row_gum::learning::DBRow< T_DATA, ALLOC >protected
setRow(const std::vector< T_DATA, OTHER_ALLOC< T_DATA > > &new_row)gum::learning::DBRow< T_DATA, ALLOC >
setRow(std::vector< T_DATA, ALLOC< T_DATA > > &&new_row)gum::learning::DBRow< T_DATA, ALLOC >
setWeight(const double new_weight)gum::learning::DBRow< T_DATA, ALLOC >
size() const noexceptgum::learning::DBRow< T_DATA, ALLOC >
weight() const noexceptgum::learning::DBRow< T_DATA, ALLOC >
weight() noexceptgum::learning::DBRow< T_DATA, ALLOC >
weight_gum::learning::DBRow< T_DATA, ALLOC >protected
~DBRow()gum::learning::DBRow< T_DATA, ALLOC >