_arcProbas_ | gum::learning::Miic | private |
_emptySet_ | gum::learning::Miic | private |
_existsDirectedPath_(const MixedGraph &graph, NodeId n1, NodeId n2) | gum::learning::Miic | privatestatic |
_existsNonTrivialDirectedPath_(const MixedGraph &graph, NodeId n1, NodeId n2) | gum::learning::Miic | privatestatic |
_initialMarks_ | gum::learning::Miic | private |
_isNotLatentCouple_(NodeId x, NodeId y) | gum::learning::Miic | private |
_latentCouples_ | gum::learning::Miic | private |
_maxLog_ | gum::learning::Miic | private |
_orientingVstructureMiic_(MixedGraph &graph, HashTable< std::pair< NodeId, NodeId >, char > &marks, NodeId x, NodeId y, NodeId z, double p1, double p2) | gum::learning::Miic | private |
_propagatingOrientationMiic_(MixedGraph &graph, HashTable< std::pair< NodeId, NodeId >, char > &marks, NodeId x, NodeId y, NodeId z, double p1, double p2) | gum::learning::Miic | private |
_size_ | gum::learning::Miic | private |
_useMiic_ | gum::learning::Miic | private |
addConstraints(HashTable< std::pair< NodeId, NodeId >, char > constraints) | gum::learning::Miic | |
ApproximationScheme(bool verbosity=false) | gum::ApproximationScheme | |
ApproximationSchemeSTATE enum name | gum::IApproximationSchemeConfiguration | |
burn_in_ | gum::ApproximationScheme | protected |
continueApproximationScheme(double error) | gum::ApproximationScheme | |
current_epsilon_ | gum::ApproximationScheme | protected |
current_rate_ | gum::ApproximationScheme | protected |
current_state_ | gum::ApproximationScheme | protected |
current_step_ | gum::ApproximationScheme | protected |
currentTime() const | gum::ApproximationScheme | virtual |
disableEpsilon() | gum::ApproximationScheme | virtual |
disableMaxIter() | gum::ApproximationScheme | virtual |
disableMaxTime() | gum::ApproximationScheme | virtual |
disableMinEpsilonRate() | gum::ApproximationScheme | virtual |
enabled_eps_ | gum::ApproximationScheme | protected |
enabled_max_iter_ | gum::ApproximationScheme | protected |
enabled_max_time_ | gum::ApproximationScheme | protected |
enabled_min_rate_eps_ | gum::ApproximationScheme | protected |
enableEpsilon() | gum::ApproximationScheme | virtual |
enableMaxIter() | gum::ApproximationScheme | virtual |
enableMaxTime() | gum::ApproximationScheme | virtual |
enableMinEpsilonRate() | gum::ApproximationScheme | virtual |
eps_ | gum::ApproximationScheme | protected |
epsilon() const | gum::ApproximationScheme | virtual |
findBestContributor_(NodeId x, NodeId y, const std::vector< NodeId > &ui, const MixedGraph &graph, CorrectedMutualInformation<> &mutualInformation, Heap< CondRanking, GreaterPairOn2nd > &rank) | gum::learning::Miic | protected |
history() const | gum::ApproximationScheme | virtual |
history_ | gum::ApproximationScheme | protected |
IApproximationSchemeConfiguration() | gum::IApproximationSchemeConfiguration | |
initApproximationScheme() | gum::ApproximationScheme | |
initiation_(CorrectedMutualInformation<> &mutualInformation, MixedGraph &graph, HashTable< std::pair< NodeId, NodeId >, std::vector< NodeId > > &sepSet, Heap< CondRanking, GreaterPairOn2nd > &rank) | gum::learning::Miic | protected |
isEnabledEpsilon() const | gum::ApproximationScheme | virtual |
isEnabledMaxIter() const | gum::ApproximationScheme | virtual |
isEnabledMaxTime() const | gum::ApproximationScheme | virtual |
isEnabledMinEpsilonRate() const | gum::ApproximationScheme | virtual |
isForbidenArc_(NodeId x, NodeId y) const | gum::learning::Miic | protected |
isOrientable_(const MixedGraph &graph, NodeId xi, NodeId xj) const | gum::learning::Miic | protected |
iteration_(CorrectedMutualInformation<> &mutualInformation, MixedGraph &graph, HashTable< std::pair< NodeId, NodeId >, std::vector< NodeId > > &sepSet, Heap< CondRanking, GreaterPairOn2nd > &rank) | gum::learning::Miic | protected |
last_epsilon_ | gum::ApproximationScheme | protected |
latentVariables() const | gum::learning::Miic | |
learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG()) | gum::learning::Miic | |
learnMixedStructure(CorrectedMutualInformation<> &mutualInformation, MixedGraph graph) | gum::learning::Miic | |
learnStructure(CorrectedMutualInformation<> &I, MixedGraph graph) | gum::learning::Miic | |
max_iter_ | gum::ApproximationScheme | protected |
max_time_ | gum::ApproximationScheme | protected |
maxIter() const | gum::ApproximationScheme | virtual |
maxTime() const | gum::ApproximationScheme | virtual |
messageApproximationScheme() const | gum::IApproximationSchemeConfiguration | |
Miic() | gum::learning::Miic | |
Miic(int maxLog) | gum::learning::Miic | explicit |
Miic(const Miic &from) | gum::learning::Miic | |
Miic(Miic &&from) | gum::learning::Miic | |
min_rate_eps_ | gum::ApproximationScheme | protected |
minEpsilonRate() const | gum::ApproximationScheme | virtual |
nbrIterations() const | gum::ApproximationScheme | virtual |
onProgress | gum::IApproximationSchemeConfiguration | |
onStop | gum::IApproximationSchemeConfiguration | |
operator=(const Miic &from) | gum::learning::Miic | |
operator=(Miic &&from) | gum::learning::Miic | |
orientation3off2_(CorrectedMutualInformation<> &mutualInformation, MixedGraph &graph, const HashTable< std::pair< NodeId, NodeId >, std::vector< NodeId > > &sepSet) | gum::learning::Miic | protected |
orientationLatents_(CorrectedMutualInformation<> &mutualInformation, MixedGraph &graph, const HashTable< std::pair< NodeId, NodeId >, std::vector< NodeId > > &sepSet) | gum::learning::Miic | protected |
orientationMiic_(CorrectedMutualInformation<> &mutualInformation, MixedGraph &graph, const HashTable< std::pair< NodeId, NodeId >, std::vector< NodeId > > &sepSet) | gum::learning::Miic | protected |
period_size_ | gum::ApproximationScheme | protected |
periodSize() const | gum::ApproximationScheme | virtual |
propagatesOrientationInChainOfRemainingEdges_(MixedGraph &graph) | gum::learning::Miic | protected |
propagatesRemainingOrientableEdges_(MixedGraph &graph, NodeId xj) | gum::learning::Miic | protected |
remainingBurnIn() | gum::ApproximationScheme | |
set3of2Behaviour() | gum::learning::Miic | |
setEpsilon(double eps) | gum::ApproximationScheme | virtual |
setMaxIter(Size max) | gum::ApproximationScheme | virtual |
setMaxTime(double timeout) | gum::ApproximationScheme | virtual |
setMiicBehaviour() | gum::learning::Miic | |
setMinEpsilonRate(double rate) | gum::ApproximationScheme | virtual |
setPeriodSize(Size p) | gum::ApproximationScheme | virtual |
setVerbosity(bool v) | gum::ApproximationScheme | virtual |
startOfPeriod() | gum::ApproximationScheme | |
stateApproximationScheme() const | gum::ApproximationScheme | virtual |
stopApproximationScheme() | gum::ApproximationScheme | |
timer_ | gum::ApproximationScheme | protected |
unshieldedTriples_(const MixedGraph &graph, CorrectedMutualInformation<> &mutualInformation, const HashTable< std::pair< NodeId, NodeId >, std::vector< NodeId > > &sepSet) | gum::learning::Miic | protected |
unshieldedTriplesMiic_(const MixedGraph &graph, CorrectedMutualInformation<> &mutualInformation, const HashTable< std::pair< NodeId, NodeId >, std::vector< NodeId > > &sepSet, HashTable< std::pair< NodeId, NodeId >, char > &marks) | gum::learning::Miic | protected |
updateApproximationScheme(unsigned int incr=1) | gum::ApproximationScheme | |
updateProbaTriples_(const MixedGraph &graph, std::vector< ProbabilisticRanking > probaTriples) | gum::learning::Miic | protected |
verbosity() const | gum::ApproximationScheme | virtual |
verbosity_ | gum::ApproximationScheme | protected |
~ApproximationScheme() | gum::ApproximationScheme | virtual |
~IApproximationSchemeConfiguration() | gum::IApproximationSchemeConfiguration | |
~Miic() override | gum::learning::Miic | |