aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
gum::learning::RecordCounter< ALLOC > Member List

This is the complete list of members for gum::learning::RecordCounter< ALLOC >, including all inherited members.

allocator_type typedefgum::learning::RecordCounter< ALLOC >
clear()gum::learning::RecordCounter< ALLOC >
clearRanges()gum::learning::RecordCounter< ALLOC >
clone() constgum::learning::RecordCounter< ALLOC >virtual
clone(const allocator_type &alloc) constgum::learning::RecordCounter< ALLOC >virtual
counts(const IdCondSet< ALLOC > &ids, const bool check_discrete_vars=false)gum::learning::RecordCounter< ALLOC >
database() constgum::learning::RecordCounter< ALLOC >
getAllocator() constgum::learning::RecordCounter< ALLOC >
minNbRowsPerThread() constgum::learning::RecordCounter< ALLOC >
nbThreads() constgum::learning::RecordCounter< ALLOC >
nodeId2Columns() constgum::learning::RecordCounter< ALLOC >
operator=(const RecordCounter< ALLOC > &from)gum::learning::RecordCounter< ALLOC >
operator=(RecordCounter< ALLOC > &&from)gum::learning::RecordCounter< ALLOC >
ranges() constgum::learning::RecordCounter< ALLOC >
RecordCounter(const DBRowGeneratorParser< ALLOC > &parser, const std::vector< std::pair< std::size_t, std::size_t >, ALLOC< std::pair< std::size_t, std::size_t > > > &ranges, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())gum::learning::RecordCounter< ALLOC >
RecordCounter(const DBRowGeneratorParser< ALLOC > &parser, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())gum::learning::RecordCounter< ALLOC >
RecordCounter(const RecordCounter< ALLOC > &from)gum::learning::RecordCounter< ALLOC >
RecordCounter(const RecordCounter< ALLOC > &from, const allocator_type &alloc)gum::learning::RecordCounter< ALLOC >
RecordCounter(RecordCounter< ALLOC > &&from)gum::learning::RecordCounter< ALLOC >
RecordCounter(RecordCounter< ALLOC > &&from, const allocator_type &alloc)gum::learning::RecordCounter< ALLOC >
setBayesNet(const BayesNet< GUM_SCALAR > &new_bn)gum::learning::RecordCounter< ALLOC >
setMaxNbThreads(const std::size_t nb) constgum::learning::RecordCounter< ALLOC >
setMinNbRowsPerThread(const std::size_t nb) constgum::learning::RecordCounter< ALLOC >
setRanges(const std::vector< std::pair< std::size_t, std::size_t >, XALLOC< std::pair< std::size_t, std::size_t > > > &new_ranges)gum::learning::RecordCounter< ALLOC >
~RecordCounter()gum::learning::RecordCounter< ALLOC >virtual