aGrUM
0.20.3
a C++ library for (probabilistic) graphical models
K2_inl.h
Go to the documentation of this file.
1
/**
2
*
3
* Copyright (c) 2005-2021 by Pierre-Henri WUILLEMIN(@LIP6) & Christophe GONZALES(@AMU)
4
* info_at_agrum_dot_org
5
*
6
* This library is free software: you can redistribute it and/or modify
7
* it under the terms of the GNU Lesser General Public License as published by
8
* the Free Software Foundation, either version 3 of the License, or
9
* (at your option) any later version.
10
*
11
* This library is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
* GNU Lesser General Public License for more details.
15
*
16
* You should have received a copy of the GNU Lesser General Public License
17
* along with this library. If not, see <http://www.gnu.org/licenses/>.
18
*
19
*/
20
21
22
/** @file
23
* @brief The K2 algorithm
24
*
25
* @author Christophe GONZALES(@AMU) and Pierre-Henri WUILLEMIN(@LIP6)
26
*/
27
28
#
ifndef
DOXYGEN_SHOULD_SKIP_THIS
29
30
namespace
gum
{
31
32
namespace
learning
{
33
34
/// default constructor
35
INLINE
K2
::
K2
() {
36
GUM_CONSTRUCTOR
(
K2
);
37
;
38
}
39
40
/// copy constructor
41
INLINE
K2
::
K2
(
const
K2
&
from
) :
GreedyHillClimbing
(
from
),
_order_
(
from
.
_order_
) {
42
GUM_CONS_CPY
(
K2
);
43
}
44
45
/// move constructor
46
INLINE
K2
::
K2
(
K2
&&
from
) :
47
GreedyHillClimbing
(
std
::
move
(
from
)),
_order_
(
std
::
move
(
from
.
_order_
)) {
48
GUM_CONS_MOV
(
K2
);
49
}
50
51
/// destructor
52
INLINE
K2
::~
K2
() {
53
GUM_DESTRUCTOR
(
K2
);
54
;
55
}
56
57
/// copy operator
58
INLINE K2&
K2
::
operator
=(
const
K2
&
from
) {
59
if
(
this
!= &
from
) {
60
GreedyHillClimbing
::
operator
=(
from
);
61
_order_
=
from
.
_order_
;
62
}
63
return
*
this
;
64
}
65
66
/// move operator
67
INLINE
K2
&
K2
::
operator
=(
K2
&&
from
) {
68
if
(
this
!= &
from
) {
69
GreedyHillClimbing
::
operator
=(
std
::
move
(
from
));
70
_order_
=
std
::
move
(
from
.
_order_
);
71
}
72
return
*
this
;
73
}
74
75
/// sets the order on the variables
76
INLINE
void
K2
::
setOrder
(
const
Sequence
<
NodeId
>&
order
) {
_order_
=
order
; }
77
78
/// sets the order on the variables
79
INLINE
void
K2
::
setOrder
(
const
std
::
vector
<
NodeId
>&
order
) {
80
_order_
.
clear
();
81
for
(
const
auto
node
:
order
) {
82
_order_
.
insert
(
node
);
83
}
84
}
85
86
/// returns the current order
87
INLINE
const
Sequence
<
NodeId
>&
K2
::
order
()
const
noexcept
{
return
_order_
; }
88
89
/** @brief checks that the order passed to K2 is coherent with the variables
90
* as specified by their modalities */
91
INLINE
void
K2
::
_checkOrder_
(
const
std
::
vector
<
Size
>&
modal
) {
92
if
(
modal
.
size
() !=
_order_
.
size
()) {
93
GUM_ERROR
(
InvalidArgument
,
94
"the number of elements in the order given "
95
"to K2 is not the same as the number of nodes"
);
96
}
97
bool
order_ok
=
true
;
98
for
(
const
auto
node
:
_order_
) {
99
if
(
node
>=
_order_
.
size
()) {
100
order_ok
=
false
;
101
break
;
102
}
103
}
104
if
(!
order_ok
) {
105
GUM_ERROR
(
InvalidArgument
,
106
"there exist at least one node in the order "
107
"given to K2 that has no domain size"
);
108
}
109
}
110
111
/// returns the approximation policy of the learning algorithm
112
INLINE
ApproximationScheme
&
K2
::
approximationScheme
() {
113
return
GreedyHillClimbing
::
approximationScheme
();
114
}
115
116
}
/* namespace learning */
117
118
}
/* namespace gum */
119
120
#
endif
/* DOXYGEN_SHOULD_SKIP_THIS */
gum::Set::emplace
INLINE void emplace(Args &&... args)
Definition:
set_tpl.h:643
gum::learning::genericBNLearner::Database::Database
Database(const std::string &filename, const BayesNet< GUM_SCALAR > &bn, const std::vector< std::string > &missing_symbols)
Definition:
genericBNLearner_tpl.h:31