aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
gum::learning::KNML< ALLOC > Member List

This is the complete list of members for gum::learning::KNML< ALLOC >, including all inherited members.

allocator_type typedefgum::learning::KNML< ALLOC >
apriori_gum::learning::IndependenceTest< ALLOC >private
cache_gum::learning::IndependenceTest< ALLOC >private
clear()gum::learning::KNML< ALLOC >virtual
clearCache()gum::learning::KNML< ALLOC >virtual
clearRanges()gum::learning::IndependenceTest< ALLOC >private
clone() constgum::learning::KNML< ALLOC >virtual
clone(const allocator_type &alloc) constgum::learning::KNML< ALLOC >virtual
counter_gum::learning::IndependenceTest< ALLOC >private
database() constgum::learning::IndependenceTest< ALLOC >private
empty_ids_gum::learning::IndependenceTest< ALLOC >private
getAllocator() constgum::learning::IndependenceTest< ALLOC >private
IndependenceTest(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &external_apriori, const std::vector< std::pair< std::size_t, std::size_t >, ALLOC< std::pair< std::size_t, std::size_t > > > &ranges, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())gum::learning::IndependenceTest< ALLOC >private
IndependenceTest(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &external_apriori, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())gum::learning::IndependenceTest< ALLOC >private
IndependenceTest(const IndependenceTest< ALLOC > &from)gum::learning::IndependenceTest< ALLOC >private
IndependenceTest(const IndependenceTest< ALLOC > &from, const allocator_type &alloc)gum::learning::IndependenceTest< ALLOC >private
IndependenceTest(IndependenceTest< ALLOC > &&from)gum::learning::IndependenceTest< ALLOC >private
IndependenceTest(IndependenceTest< ALLOC > &&from, const allocator_type &alloc)gum::learning::IndependenceTest< ALLOC >private
KNML(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &apriori, const std::vector< std::pair< std::size_t, std::size_t >, ALLOC< std::pair< std::size_t, std::size_t > > > &ranges, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())gum::learning::KNML< ALLOC >
KNML(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &apriori, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())gum::learning::KNML< ALLOC >
KNML(const KNML< ALLOC > &from)gum::learning::KNML< ALLOC >
KNML(const KNML< ALLOC > &from, const allocator_type &alloc)gum::learning::KNML< ALLOC >
KNML(KNML< ALLOC > &&from)gum::learning::KNML< ALLOC >
KNML(KNML< ALLOC > &&from, const allocator_type &alloc)gum::learning::KNML< ALLOC >
marginalize_(const std::size_t node_2_marginalize, const std::size_t X_size, const std::size_t Y_size, const std::size_t Z_size, const std::vector< double, ALLOC< double > > &N_xyz) constgum::learning::IndependenceTest< ALLOC >private
minNbRowsPerThread() constgum::learning::IndependenceTest< ALLOC >privatevirtual
nbThreads() constgum::learning::IndependenceTest< ALLOC >privatevirtual
nodeId2Columns() constgum::learning::IndependenceTest< ALLOC >private
one_log2_gum::learning::IndependenceTest< ALLOC >private
operator=(const KNML< ALLOC > &from)gum::learning::KNML< ALLOC >
operator=(KNML< ALLOC > &&from)gum::learning::KNML< ALLOC >
gum::learning::IndependenceTest::operator=(const IndependenceTest< ALLOC > &from)gum::learning::IndependenceTest< ALLOC >private
gum::learning::IndependenceTest::operator=(IndependenceTest< ALLOC > &&from)gum::learning::IndependenceTest< ALLOC >private
ranges() constgum::learning::IndependenceTest< ALLOC >private
score(const NodeId var1, const NodeId var2)gum::learning::IndependenceTest< ALLOC >private
score(const NodeId var1, const NodeId var2, const std::vector< NodeId, ALLOC< NodeId > > &rhs_ids)gum::learning::IndependenceTest< ALLOC >private
score_(const IdCondSet< ALLOC > &idset) finalgum::learning::KNML< ALLOC >protectedvirtual
setMaxNbThreads(std::size_t nb) constgum::learning::IndependenceTest< ALLOC >privatevirtual
setMinNbRowsPerThread(const std::size_t nb) constgum::learning::IndependenceTest< ALLOC >privatevirtual
setRanges(const std::vector< std::pair< std::size_t, std::size_t >, XALLOC< std::pair< std::size_t, std::size_t > > > &new_ranges)gum::learning::IndependenceTest< ALLOC >private
use_cache_gum::learning::IndependenceTest< ALLOC >private
useCache(const bool on_off)gum::learning::KNML< ALLOC >virtual
~IndependenceTest()gum::learning::IndependenceTest< ALLOC >privatevirtual
~KNML()gum::learning::KNML< ALLOC >virtual