![]() |
aGrUM
0.20.3
a C++ library for (probabilistic) graphical models
|
This is the complete list of members for gum::SDYNA, including all inherited members.
_actionReward_ | gum::SDYNA | private |
_bin_ | gum::SDYNA | private |
_decider_ | gum::SDYNA | private |
_lastAction_ | gum::SDYNA | private |
_learner_ | gum::SDYNA | private |
_nbObservation_ | gum::SDYNA | private |
_nbValueIterationStep_ | gum::SDYNA | private |
_observationPhaseLenght_ | gum::SDYNA | private |
_planer_ | gum::SDYNA | private |
addAction(const Idx actionId, const std::string &actionName) | gum::SDYNA | inline |
addVariable(const DiscreteVariable *var) | gum::SDYNA | inline |
feedback(const Instantiation &originalState, const Instantiation &reachedState, Idx performedAction, double obtainedReward) | gum::SDYNA | |
feedback(const Instantiation &reachedState, double obtainedReward) | gum::SDYNA | |
fmdp_ | gum::SDYNA | protected |
initialize() | gum::SDYNA | |
initialize(const Instantiation &initialState) | gum::SDYNA | |
lastState_ | gum::SDYNA | protected |
learnerSize() | gum::SDYNA | inline |
makePlanning(Idx nbStep) | gum::SDYNA | |
modelSize() | gum::SDYNA | inline |
optimalPolicy2String() | gum::SDYNA | inline |
optimalPolicySize() | gum::SDYNA | inline |
RandomMDDInstance(double attributeSelectionThreshold=0.99, double similarityThreshold=0.3, double discountFactor=0.9, double epsilon=1, Idx observationPhaseLenght=100, Idx nbValueIterationStep=10) | gum::SDYNA | inlinestatic |
RandomTreeInstance(double attributeSelectionThreshold=0.99, double discountFactor=0.9, double epsilon=1, Idx observationPhaseLenght=100, Idx nbValueIterationStep=10) | gum::SDYNA | inlinestatic |
RMaxMDDInstance(double attributeSelectionThreshold=0.99, double similarityThreshold=0.3, double discountFactor=0.9, double epsilon=1, Idx observationPhaseLenght=100, Idx nbValueIterationStep=10) | gum::SDYNA | inlinestatic |
RMaxTreeInstance(double attributeSelectionThreshold=0.99, double discountFactor=0.9, double epsilon=1, Idx observationPhaseLenght=100, Idx nbValueIterationStep=10) | gum::SDYNA | inlinestatic |
SDYNA(ILearningStrategy *learner, IPlanningStrategy< double > *planer, IDecisionStrategy *decider, Idx observationPhaseLenght, Idx nbValueIterationStep, bool actionReward, bool verbose=true) | gum::SDYNA | private |
setCurrentState(const Instantiation ¤tState) | gum::SDYNA | inline |
spimddiInstance(double attributeSelectionThreshold=0.99, double similarityThreshold=0.3, double discountFactor=0.9, double epsilon=1, Idx observationPhaseLenght=100, Idx nbValueIterationStep=10) | gum::SDYNA | inlinestatic |
spitiInstance(double attributeSelectionThreshold=0.99, double discountFactor=0.9, double epsilon=1, Idx observationPhaseLenght=100, Idx nbValueIterationStep=10) | gum::SDYNA | inlinestatic |
takeAction(const Instantiation &curState) | gum::SDYNA | |
takeAction() | gum::SDYNA | |
toString() | gum::SDYNA | |
valueFunctionSize() | gum::SDYNA | inline |
verbose_ | gum::SDYNA | private |
~SDYNA() | gum::SDYNA |