aGrUM  0.14.2
MonteCarloSampling.h
Go to the documentation of this file.
1 /***************************************************************************
2  * Copyright (C) 2005 by Pierre-Henri WUILLEMIN et Christophe GONZALES *
3  * {prenom.nom}_at_lip6.fr *
4  * *
5  * This program is free software; you can redistribute it and/or modify *
6  * it under the terms of the GNU General Public License as published by *
7  * the Free Software Foundation; either version 2 of the License, or *
8  * (at your option) any later version. *
9  * *
10  * This program is distributed in the hope that it will be useful, *
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13  * GNU General Public License for more details. *
14  * *
15  * You should have received a copy of the GNU General Public License *
16  * along with this program; if not, write to the *
17  * Free Software Foundation, Inc., *
18  * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19  ***************************************************************************/
28 #ifndef GUM_MONTE_CARLO_INFERENCE_H
29 #define GUM_MONTE_CARLO_INFERENCE_H
30 
32 
33 namespace gum {
34 
49  template < typename GUM_SCALAR >
50  class MonteCarloSampling : public SamplingInference< GUM_SCALAR > {
51  public:
55  explicit MonteCarloSampling(const IBayesNet< GUM_SCALAR >* bn);
56 
60  ~MonteCarloSampling() override;
61 
62  protected:
64  Instantiation _burnIn() override;
65 
67 
78  Instantiation _draw(GUM_SCALAR* w, Instantiation prev) override;
79  };
80 
81 
82 #ifndef GUM_NO_EXTERN_TEMPLATE_CLASS
83  extern template class MonteCarloSampling< double >;
84 #endif
85 } // namespace gum
86 
88 
89 #endif
Class representing the minimal interface for Bayesian Network.
Definition: IBayesNet.h:59
gum is the global namespace for all aGrUM entities
Definition: agrum.h:25
Instantiation _burnIn() override
draws a defined number of samples without updating the estimators
This file contains general methods for simulation-oriented approximate inference. ...
~MonteCarloSampling() override
Destructor.
Class for assigning/browsing values to tuples of discrete variables.
Definition: instantiation.h:80
Implementation of Monte Carlo Sampling for inference in Bayesian Networks.
Instantiation _draw(GUM_SCALAR *w, Instantiation prev) override
draws a sample according to classic Monte Carlo sampling
MonteCarloSampling(const IBayesNet< GUM_SCALAR > *bn)
Default constructor.