26 #ifndef GUM_LEARNING_SCORE_LOG2_LIKELIHOOD_H 27 #define GUM_LEARNING_SCORE_LOG2_LIKELIHOOD_H 48 template <
template <
typename >
class ALLOC = std::allocator >
83 const std::vector< std::pair< std::size_t, std::size_t >,
84 ALLOC< std::pair< std::size_t, std::size_t > > >&
194 double score(const
IdSet< ALLOC >& idset);
203 double weight = 1.0f);
215 virtual
double _score(const
IdSet< ALLOC >& idset) final;
218 #ifndef DOXYGEN_SHOULD_SKIP_THIS 232 #ifndef GUM_NO_EXTERN_TEMPLATE_CLASS
double score(const IdSet< ALLOC > &idset)
returns the score for a given IdSet
The base class for all the scores used for learning (BIC, BDeu, etc)
the no a priori class: corresponds to 0 weight-sample
virtual ScoreLog2Likelihood< ALLOC > * clone() const
virtual copy constructor
ALLOC< NodeId > allocator_type
type for the allocators passed in arguments of methods
A class for storing a pair of sets of NodeIds, the second one corresponding to a conditional set...
virtual ~ScoreLog2Likelihood()
destructor
the base class for all a priori
virtual const Apriori< ALLOC > & internalApriori() const final
returns the internal apriori of the score
ALLOC< NodeId > allocator_type
type for the allocators passed in arguments of methods
gum is the global namespace for all aGrUM entities
the class for computing Log2-likelihood scores
const std::vector< std::pair< std::size_t, std::size_t >, ALLOC< std::pair< std::size_t, std::size_t > > > & ranges() const
returns the current ranges
Set of pairs of elements with fast search for both elements.
the base class for all the scores used for learning (BIC, BDeu, etc)
ScoreLog2Likelihood< ALLOC > & operator=(const ScoreLog2Likelihood< ALLOC > &from)
copy operator
ScoreLog2Likelihood(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &apriori, const std::vector< std::pair< std::size_t, std::size_t >, ALLOC< std::pair< std::size_t, std::size_t > > > &ranges, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())
default constructor
virtual std::string isAprioriCompatible() const final
indicates whether the apriori is compatible (meaningful) with the score
the class used to read a row in the database and to transform it into a set of DBRow instances that c...
virtual double _score(const IdSet< ALLOC > &idset) final
returns the score for a given IdSet
Size NodeId
Type for node ids.
the no a priori class: corresponds to 0 weight-sample
the class for computing Log2-Likelihood scores