![]() |
aGrUM
0.14.2
|
<agrum/BN/inference/variableElimination.h> More...
#include <variableElimination.h>
Public Member Functions | |
Potential< GUM_SCALAR > | evidenceJointImpact (const NodeSet &targets, const NodeSet &evs) |
Create a gum::Potential for P(joint targets|evs) (for all instanciation of targets and evs) More... | |
Potential< GUM_SCALAR > | evidenceJointImpact (const std::vector< std::string > &targets, const std::vector< std::string > &evs) |
Create a gum::Potential for P(joint targets|evs) (for all instanciation of targets and evs) More... | |
Potential< GUM_SCALAR > | evidenceImpact (NodeId target, const NodeSet &evs) |
Create a gum::Potential for P(target|evs) (for all instanciation of target and evs) More... | |
Potential< GUM_SCALAR > | evidenceImpact (const std::string &target, const std::vector< std::string > &evs) |
Create a gum::Potential for P(target|evs) (for all instanciation of target and evs) More... | |
Constructors / Destructors | |
VariableElimination (const IBayesNet< GUM_SCALAR > *BN, RelevantPotentialsFinderType relevant_type=RelevantPotentialsFinderType::DSEP_BAYESBALL_POTENTIALS, FindBarrenNodesType=FindBarrenNodesType::FIND_BARREN_NODES) | |
default constructor More... | |
VariableElimination (const VariableElimination< GUM_SCALAR > &)=delete | |
avoid copy constructors More... | |
VariableElimination< GUM_SCALAR > & | operator= (const VariableElimination< GUM_SCALAR > &)=delete |
avoid copy operators More... | |
~VariableElimination () final | |
destructor More... | |
Accessors / Modifiers | |
void | setTriangulation (const Triangulation &new_triangulation) |
use a new triangulation algorithm More... | |
void | setRelevantPotentialsFinderType (RelevantPotentialsFinderType type) |
sets how we determine the relevant potentials to combine More... | |
void | setFindBarrenNodesType (FindBarrenNodesType type) |
sets how we determine barren nodes More... | |
const JunctionTree * | junctionTree (NodeId id) |
returns the join tree used for compute the posterior of node id More... | |
Probability computations | |
virtual const Potential< GUM_SCALAR > & | jointPosterior (const NodeSet &nodes) final |
Compute the joint posterior of a set of nodes. More... | |
virtual const Potential< GUM_SCALAR > & | posterior (NodeId node) final |
Computes and returns the posterior of a node. More... | |
virtual const Potential< GUM_SCALAR > & | posterior (const std::string &nodeName) final |
Computes and returns the posterior of a node. More... | |
Targets | |
virtual void | eraseAllTargets () |
Clear all previously defined targets (marginal and joint targets) More... | |
virtual void | eraseAllJointTargets () final |
Clear all previously defined joint targets. More... | |
virtual void | eraseAllMarginalTargets () final |
Clear all the previously defined marginal targets. More... | |
virtual void | addJointTarget (const NodeSet &joint_target) final |
Add a set of nodes as a new joint target. As a collateral effect, every node is added as a marginal target. More... | |
virtual void | eraseJointTarget (const NodeSet &joint_target) final |
removes an existing joint target More... | |
virtual bool | isJointTarget (const NodeSet &vars) const final |
return true if target is a joint target. More... | |
virtual const Set< NodeSet > & | jointTargets () const noexcept final |
returns the list of joint targets More... | |
virtual Size | nbrJointTargets () const noexcept final |
returns the number of joint targets More... | |
Information Theory related functions | |
GUM_SCALAR | I (NodeId X, NodeId Y) |
Mutual information between X and Y. More... | |
GUM_SCALAR | VI (NodeId X, NodeId Y) |
Variation of information between X and Y. More... | |
GUM_SCALAR | jointMutualInformation (const NodeSet &targets) |
Mutual information between targets. More... | |
GUM_SCALAR | jointMutualInformation (const std::vector< std::string > &targets) |
Mutual information between targets. More... | |
Targets | |
virtual void | addAllTargets () final |
adds all nodes as targets More... | |
virtual void | addTarget (NodeId target) final |
Add a marginal target to the list of targets. More... | |
virtual void | addTarget (const std::string &nodeName) final |
Add a marginal target to the list of targets. More... | |
virtual void | eraseTarget (NodeId target) final |
removes an existing (marginal) target More... | |
virtual void | eraseTarget (const std::string &nodeName) final |
removes an existing (marginal) target More... | |
virtual bool | isTarget (NodeId node) const final |
return true if variable is a (marginal) target More... | |
virtual bool | isTarget (const std::string &nodeName) const final |
return true if variable is a (marginal) target More... | |
virtual const Size | nbrTargets () const noexcept final |
returns the number of marginal targets More... | |
virtual const NodeSet & | targets () const noexcept final |
returns the list of marginal targets More... | |
Information Theory related functions | |
virtual GUM_SCALAR | H (NodeId X) final |
Entropy Compute Shanon's entropy of a node given the observation. More... | |
virtual GUM_SCALAR | H (const std::string &nodeName) final |
Entropy Compute Shanon's entropy of a node given the observation. More... | |
Accessors / Modifiers | |
virtual void | setBN (const IBayesNet< GUM_SCALAR > *bn) |
assigns a new BN to the inference engine More... | |
virtual const IBayesNet< GUM_SCALAR > & | BN () const final |
Returns a constant reference over the IBayesNet referenced by this class. More... | |
virtual const NodeProperty< Size > & | domainSizes () const final |
get the domain sizes of the random variables of the BN More... | |
virtual bool | isInferenceReady () const noexcept final |
returns whether the inference object is in a ready state More... | |
virtual bool | isInferenceOutdatedBNStructure () const noexcept final |
returns whether the inference object is in a OutdatedBNStructure state More... | |
virtual bool | isInferenceOutdatedBNPotentials () const noexcept final |
returns whether the inference object is in a OutdatedBNPotential state More... | |
virtual bool | isInferenceDone () const noexcept final |
returns whether the inference object is in a InferenceDone state More... | |
virtual bool | isDone () const noexcept final |
returns whether the inference object is in a done state More... | |
virtual void | prepareInference () final |
prepare the internal inference structures for the next inference More... | |
virtual void | makeInference () final |
perform the heavy computations needed to compute the targets' posteriors More... | |
virtual void | clear () |
clears all the data structures allocated for the last inference More... | |
virtual StateOfInference | state () const noexcept final |
returns the state of the inference engine More... | |
Evidence | |
virtual void | addEvidence (NodeId id, const Idx val) final |
adds a new hard evidence on node id More... | |
virtual void | addEvidence (const std::string &nodeName, const Idx val) final |
adds a new hard evidence on node named nodeName More... | |
virtual void | addEvidence (NodeId id, const std::string &label) final |
adds a new hard evidence on node id More... | |
virtual void | addEvidence (const std::string &nodeName, const std::string &label) final |
adds a new hard evidence on node named nodeName More... | |
virtual void | addEvidence (NodeId id, const std::vector< GUM_SCALAR > &vals) final |
adds a new evidence on node id (might be soft or hard) More... | |
virtual void | addEvidence (const std::string &nodeName, const std::vector< GUM_SCALAR > &vals) final |
adds a new evidence on node named nodeName (might be soft or hard) More... | |
virtual void | addEvidence (const Potential< GUM_SCALAR > &pot) final |
adds a new evidence on node id (might be soft or hard) More... | |
virtual void | addEvidence (Potential< GUM_SCALAR > &&pot) final |
adds a new evidence on node id (might be soft or hard) More... | |
virtual void | addSetOfEvidence (const Set< const Potential< GUM_SCALAR > * > &potset) final |
adds a new set of evidence More... | |
virtual void | addListOfEvidence (const List< const Potential< GUM_SCALAR > * > &potlist) final |
adds a new list of evidence More... | |
virtual void | chgEvidence (NodeId id, const Idx val) final |
change the value of an already existing hard evidence More... | |
virtual void | chgEvidence (const std::string &nodeName, const Idx val) final |
change the value of an already existing hard evidence More... | |
virtual void | chgEvidence (NodeId id, const std::string &label) final |
change the value of an already existing hard evidence More... | |
virtual void | chgEvidence (const std::string &nodeName, const std::string &label) final |
change the value of an already existing hard evidence More... | |
virtual void | chgEvidence (NodeId id, const std::vector< GUM_SCALAR > &vals) final |
change the value of an already existing evidence (might be soft or hard) More... | |
virtual void | chgEvidence (const std::string &nodeName, const std::vector< GUM_SCALAR > &vals) final |
change the value of an already existing evidence (might be soft or hard) More... | |
virtual void | chgEvidence (const Potential< GUM_SCALAR > &pot) final |
change the value of an already existing evidence (might be soft or hard) More... | |
virtual void | eraseAllEvidence () final |
removes all the evidence entered into the network More... | |
virtual void | eraseEvidence (NodeId id) final |
removed the evidence, if any, corresponding to node id More... | |
virtual void | eraseEvidence (const std::string &nodeName) final |
removed the evidence, if any, corresponding to node of name nodeName More... | |
virtual bool | hasEvidence () const final |
indicates whether some node(s) have received evidence More... | |
virtual bool | hasEvidence (NodeId id) const final |
indicates whether node id has received an evidence More... | |
virtual bool | hasEvidence (const std::string &nodeName) const final |
indicates whether node id has received an evidence More... | |
virtual bool | hasHardEvidence (NodeId id) const final |
indicates whether node id has received a hard evidence More... | |
virtual bool | hasHardEvidence (const std::string &nodeName) const final |
indicates whether node id has received a hard evidence More... | |
virtual bool | hasSoftEvidence (NodeId id) const final |
indicates whether node id has received a soft evidence More... | |
virtual bool | hasSoftEvidence (const std::string &nodeName) const final |
indicates whether node id has received a soft evidence More... | |
virtual Size | nbrEvidence () const final |
returns the number of evidence entered into the Bayesian network More... | |
virtual Size | nbrHardEvidence () const final |
returns the number of hard evidence entered into the Bayesian network More... | |
virtual Size | nbrSoftEvidence () const final |
returns the number of soft evidence entered into the Bayesian network More... | |
const NodeProperty< const Potential< GUM_SCALAR > *> & | evidence () const |
returns the set of evidence More... | |
const NodeSet & | softEvidenceNodes () const |
returns the set of nodes with soft evidence More... | |
const NodeSet & | hardEvidenceNodes () const |
returns the set of nodes with hard evidence More... | |
const NodeProperty< Idx > & | hardEvidence () const |
indicate for each node with hard evidence which value it took More... | |
Public Types | |
enum | StateOfInference { StateOfInference::OutdatedBNStructure, StateOfInference::OutdatedBNPotentials, StateOfInference::ReadyForInference, StateOfInference::Done } |
current state of the inference More... | |
Protected Member Functions | |
void | _onStateChanged () final |
fired when the stage is changed More... | |
void | _onEvidenceAdded (const NodeId id, bool isHardEvidence) final |
fired after a new evidence is inserted More... | |
void | _onEvidenceErased (const NodeId id, bool isHardEvidence) final |
fired before an evidence is removed More... | |
void | _onAllEvidenceErased (bool contains_hard_evidence) final |
fired before all the evidence are erased More... | |
void | _onEvidenceChanged (const NodeId id, bool hasChangedSoftHard) final |
fired after an evidence is changed, in particular when its status (soft/hard) changes More... | |
void | _onMarginalTargetAdded (const NodeId id) final |
fired after a new single target is inserted More... | |
void | _onMarginalTargetErased (const NodeId id) final |
fired before a single target is removed More... | |
virtual void | _onBayesNetChanged (const IBayesNet< GUM_SCALAR > *bn) final |
fired after a new Bayes net has been assigned to the engine More... | |
void | _onJointTargetAdded (const NodeSet &set) final |
fired after a new joint target is inserted More... | |
void | _onJointTargetErased (const NodeSet &set) final |
fired before a joint target is removed More... | |
void | _onAllMarginalTargetsAdded () final |
fired after all the nodes of the BN are added as single targets More... | |
void | _onAllMarginalTargetsErased () final |
fired before a all the single targets are removed More... | |
void | _onAllJointTargetsErased () final |
fired before a all the joint targets are removed More... | |
void | _onAllTargetsErased () final |
fired before a all single and joint_targets are removed More... | |
void | _updateOutdatedBNStructure () final |
prepares inference when the latter is in OutdatedBNStructure state More... | |
void | _updateOutdatedBNPotentials () final |
prepares inference when the latter is in OutdatedBNPotentials state More... | |
void | _makeInference () final |
called when the inference has to be performed effectively More... | |
const Potential< GUM_SCALAR > & | _posterior (NodeId id) final |
returns the posterior of a given variable More... | |
const Potential< GUM_SCALAR > & | _jointPosterior (const NodeSet &set) final |
returns the posterior of a declared target set More... | |
const Potential< GUM_SCALAR > & | _jointPosterior (const NodeSet &wanted_target, const NodeSet &declared_target) final |
asks derived classes for the joint posterior of a set of variables not declared as a joint target More... | |
Potential< GUM_SCALAR > * | _unnormalizedJointPosterior (NodeId id) final |
returns a fresh potential equal to P(argument,evidence) More... | |
Potential< GUM_SCALAR > * | _unnormalizedJointPosterior (const NodeSet &set) final |
returns a fresh potential equal to P(argument,evidence) More... | |
void | _setTargetedMode () |
bool | _isTargetedMode () const |
void | _setOutdatedBNStructureState () |
put the inference into an outdated BN structure state More... | |
void | _setOutdatedBNPotentialsState () |
puts the inference into an OutdatedBNPotentials state if it is not already in an OutdatedBNStructure state More... | |
<agrum/BN/inference/variableElimination.h>
Implementation of a Shafer-Shenoy's-like version of lazy propagation for inference in Bayesian Networks
Definition at line 67 of file variableElimination.h.
|
private |
Definition at line 225 of file variableElimination.h.
|
private |
Definition at line 227 of file variableElimination.h.
|
stronginherited |
current state of the inference
BayesNetInference can be in one of 4 different states:
Enumerator | |
---|---|
OutdatedBNStructure | |
OutdatedBNPotentials | |
ReadyForInference | |
Done |
Definition at line 180 of file BayesNetInference.h.
|
explicit |
default constructor
|
delete |
avoid copy constructors
|
final |
destructor
|
private |
actually perform the collect phase
|
private |
create a new junction tree as well as its related data structures
|
private |
update a set of potentials: the remaining are those to be combined to produce a message on a separator
|
private |
update a set of potentials: the remaining are those to be combined to produce a message on a separator
|
private |
update a set of potentials: the remaining are those to be combined to produce a message on a separator
|
private |
update a set of potentials: the remaining are those to be combined to produce a message on a separator
|
private |
update a set of potentials: the remaining are those to be combined to produce a message on a separator
|
private |
removes variables del_vars from a list of potentials and returns the resulting list
|
private |
returns the CPT + evidence of a node projected w.r.t. hard evidence
|
private |
creates the message sent by clique from_id to clique to_id
|
private |
|
private |
sets the operator for performing the combinations
|
private |
sets the operator for performing the projections
|
protectedinherited |
Definition at line 335 of file marginalTargetedInference_tpl.h.
References gum::MarginalTargetedInference< GUM_SCALAR >::__targeted_mode.
|
finalprotectedvirtual |
returns the posterior of a declared target set
set | The set of ids of the variables whose joint posterior is looked for. |
Implements gum::JointTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
asks derived classes for the joint posterior of a set of variables not declared as a joint target
wanted_target | The set of ids of the variables whose joint posterior is looked for. |
declared_target | the joint target declared by the user that contains set |
Implements gum::JointTargetedInference< GUM_SCALAR >.
|
finalprotectedvirtual |
called when the inference has to be performed effectively
Once the inference is done, _fillPosterior can be called.
Implements gum::BayesNetInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired before all the evidence are erased
Implements gum::BayesNetInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired before a all the joint targets are removed
Implements gum::JointTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired after all the nodes of the BN are added as single targets
Implements gum::MarginalTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired before a all the single targets are removed
Implements gum::MarginalTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired before a all single and joint_targets are removed
Implements gum::JointTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired after a new Bayes net has been assigned to the engine
Reimplemented from gum::JointTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired after a new evidence is inserted
Implements gum::BayesNetInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired after an evidence is changed, in particular when its status (soft/hard) changes
nodeId | the node of the changed evidence |
hasChangedSoftHard | true if the evidence has changed from Soft to Hard or from Hard to Soft |
Implements gum::BayesNetInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired before an evidence is removed
Implements gum::BayesNetInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired after a new joint target is inserted
set | The set of target variable's ids. |
Implements gum::JointTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired before a joint target is removed
set | The set of target variable's ids. |
Implements gum::JointTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired after a new single target is inserted
id | The target variable's id. |
Implements gum::MarginalTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
fired before a single target is removed
id | The target variable's id. |
Implements gum::MarginalTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
inlinefinalprotectedvirtual |
fired when the stage is changed
Implements gum::BayesNetInference< GUM_SCALAR >.
Definition at line 129 of file variableElimination.h.
References gum::VariableElimination< GUM_SCALAR >::_jointPosterior(), gum::VariableElimination< GUM_SCALAR >::_makeInference(), gum::VariableElimination< GUM_SCALAR >::_onAllEvidenceErased(), gum::VariableElimination< GUM_SCALAR >::_onAllJointTargetsErased(), gum::VariableElimination< GUM_SCALAR >::_onAllMarginalTargetsAdded(), gum::VariableElimination< GUM_SCALAR >::_onAllMarginalTargetsErased(), gum::VariableElimination< GUM_SCALAR >::_onAllTargetsErased(), gum::VariableElimination< GUM_SCALAR >::_onBayesNetChanged(), gum::VariableElimination< GUM_SCALAR >::_onEvidenceAdded(), gum::VariableElimination< GUM_SCALAR >::_onEvidenceChanged(), gum::VariableElimination< GUM_SCALAR >::_onEvidenceErased(), gum::VariableElimination< GUM_SCALAR >::_onJointTargetAdded(), gum::VariableElimination< GUM_SCALAR >::_onJointTargetErased(), gum::VariableElimination< GUM_SCALAR >::_onMarginalTargetAdded(), gum::VariableElimination< GUM_SCALAR >::_onMarginalTargetErased(), gum::VariableElimination< GUM_SCALAR >::_posterior(), gum::VariableElimination< GUM_SCALAR >::_unnormalizedJointPosterior(), gum::VariableElimination< GUM_SCALAR >::_updateOutdatedBNPotentials(), and gum::VariableElimination< GUM_SCALAR >::_updateOutdatedBNStructure().
|
finalprotectedvirtual |
returns the posterior of a given variable
id | The variable's id. |
Implements gum::MarginalTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
protectedinherited |
puts the inference into an OutdatedBNPotentials state if it is not already in an OutdatedBNStructure state
OutdatedBNPotentials: in this state, the structure of the BN remains unchanged, only some potentials stored in it have changed. Therefore, the inference probably just needs to invalidate some already computed potentials to be ready. Only a light amount of preparation is needed to be able to perform inference.
Definition at line 682 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__setState(), and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNPotentials.
|
protectedinherited |
put the inference into an outdated BN structure state
OutdatedBNStructure: in this state, the inference is fully unprepared to be applied because some events changed the "logical" structure of the BN: for instance a node received a hard evidence, which implies that its outgoing arcs can be removed from the BN, hence involving a structural change in the BN. As a consequence, the (incremental) inference (probably) needs a significant amount of preparation to be ready for the next inference. In a Lazy propagation, for instance, this step amounts to compute a new join tree, hence a new structure in which inference will be applied. Note that classes that inherit from BayesNetInference may be smarter than BayesNetInference and may, in some situations, find out that their data structures are still ok for inference and, therefore, only resort to perform the actions related to the OutdatedBNPotentials state. As an example, consider a LazyPropagation inference in Bayes Net A->B->C->D->E in which C has received hard evidence e_C and E is the only target. In this case, A and B are not needed for inference, the only potentials that matter are P(D|e_C) and P(E|D). So the smallest join tree needed for inference contains only one clique DE. Now, adding new evidence e_A on A has no impact on E given hard evidence e_C. In this case, LazyPropagation can be smart and not update its join tree.
Definition at line 674 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__setState(), and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure.
|
protectedinherited |
Definition at line 339 of file marginalTargetedInference_tpl.h.
References gum::MarginalTargetedInference< GUM_SCALAR >::__targeted_mode, gum::MarginalTargetedInference< GUM_SCALAR >::__targets, and gum::Set< Key, Alloc >::clear().
Referenced by gum::MarginalTargetedInference< GUM_SCALAR >::addAllTargets(), gum::JointTargetedInference< GUM_SCALAR >::addJointTarget(), gum::MarginalTargetedInference< GUM_SCALAR >::addTarget(), and gum::MarginalTargetedInference< GUM_SCALAR >::eraseAllTargets().
|
finalprotectedvirtual |
returns a fresh potential equal to P(argument,evidence)
Implements gum::JointTargetedInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
returns a fresh potential equal to P(argument,evidence)
Implements gum::JointTargetedInference< GUM_SCALAR >.
|
finalprotectedvirtual |
prepares inference when the latter is in OutdatedBNPotentials state
Note that the values of evidence are not necessarily known and can be changed between _updateOutdatedBNPotentials and _makeInference.
Implements gum::BayesNetInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalprotectedvirtual |
prepares inference when the latter is in OutdatedBNStructure state
Note that the values of evidence are not necessarily known and can be changed between _updateOutdatedBNStructure and _makeInference.
Implements gum::BayesNetInference< GUM_SCALAR >.
Referenced by gum::VariableElimination< GUM_SCALAR >::_onStateChanged().
|
finalvirtualinherited |
adds all nodes as targets
Definition at line 133 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::MarginalTargetedInference< GUM_SCALAR >::__targets, gum::MarginalTargetedInference< GUM_SCALAR >::_onMarginalTargetAdded(), gum::MarginalTargetedInference< GUM_SCALAR >::_setTargetedMode(), gum::Set< Key, Alloc >::contains(), GUM_ERROR, and gum::Set< Key, Alloc >::insert().
|
finalvirtualinherited |
adds a new hard evidence on node id
UndefinedElement | if id does not belong to the Bayesian network |
InvalidArgument | if val is not a value for id |
InvalidArgument | if id already has an evidence |
Definition at line 244 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__createHardEvidence().
Referenced by gum::LoopySamplingInference< GUM_SCALAR, APPROX >::_makeInference(), gum::BayesNetInference< GUM_SCALAR >::addEvidence(), gum::BayesNetInference< GUM_SCALAR >::addListOfEvidence(), gum::BayesNetInference< GUM_SCALAR >::addSetOfEvidence(), gum::MarginalTargetedInference< GUM_SCALAR >::evidenceImpact(), and gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact().
|
finalvirtualinherited |
adds a new hard evidence on node named nodeName
UndefinedElement | if nodeName does not belong to the Bayesian network |
InvalidArgument | if val is not a value for id |
InvalidArgument | if nodeName already has an evidence |
Definition at line 252 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::addEvidence(), and gum::BayesNetInference< GUM_SCALAR >::BN().
|
finalvirtualinherited |
adds a new hard evidence on node id
UndefinedElement | if id does not belong to the Bayesian network |
InvalidArgument | if val is not a value for id |
InvalidArgument | if id already has an evidence |
Definition at line 260 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::addEvidence(), and gum::BayesNetInference< GUM_SCALAR >::BN().
|
finalvirtualinherited |
adds a new hard evidence on node named nodeName
UndefinedElement | if nodeName does not belong to the Bayesian network |
InvalidArgument | if val is not a value for id |
InvalidArgument | if nodeName already has an evidence |
Definition at line 268 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::addEvidence(), and gum::BayesNetInference< GUM_SCALAR >::BN().
|
finalvirtualinherited |
adds a new evidence on node id (might be soft or hard)
UndefinedElement | if id does not belong to the Bayesian network |
InvalidArgument | if id already has an evidence |
FatalError | if vals=[0,0,...,0] |
InvalidArgument | if the size of vals is different from the domain size of node id |
Definition at line 276 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::MultiDimDecorator< GUM_SCALAR >::add(), gum::BayesNetInference< GUM_SCALAR >::addEvidence(), and GUM_ERROR.
|
finalvirtualinherited |
adds a new evidence on node named nodeName (might be soft or hard)
UndefinedElement | if id does not belong to the Bayesian network |
InvalidArgument | if nodeName already has an evidence |
FatalError | if vals=[0,0,...,0] |
InvalidArgument | if the size of vals is different from the domain size of node nodeName |
Definition at line 302 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::addEvidence(), and gum::BayesNetInference< GUM_SCALAR >::BN().
|
finalvirtualinherited |
adds a new evidence on node id (might be soft or hard)
UndefinedElement | if the potential is defined over several nodes |
UndefinedElement | if the node on which the potential is defined does not belong to the Bayesian network |
InvalidArgument | if the node of the potential already has an evidence |
FatalError | if pot=[0,0,...,0] |
Definition at line 351 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::addEvidence().
|
finalvirtualinherited |
adds a new evidence on node id (might be soft or hard)
UndefinedElement | if the potential is defined over several nodes |
UndefinedElement | if the node on which the potential is defined does not belong to the Bayesian network |
InvalidArgument | if the node of the potential already has an evidence |
FatalError | if pot=[0,0,...,0] |
Definition at line 310 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::BayesNetInference< GUM_SCALAR >::__evidence, gum::BayesNetInference< GUM_SCALAR >::__hard_evidence, gum::BayesNetInference< GUM_SCALAR >::__hard_evidence_nodes, gum::BayesNetInference< GUM_SCALAR >::__isHardEvidence(), gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::BayesNetInference< GUM_SCALAR >::__soft_evidence_nodes, gum::BayesNetInference< GUM_SCALAR >::_onEvidenceAdded(), GUM_ERROR, gum::BayesNetInference< GUM_SCALAR >::hasEvidence(), gum::Set< Key, Alloc >::insert(), and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure.
|
finalvirtualinherited |
Add a set of nodes as a new joint target. As a collateral effect, every node is added as a marginal target.
UndefinedElement | if some node(s) do not belong to the Bayes net |
Definition at line 115 of file jointTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::JointTargetedInference< GUM_SCALAR >::__joint_targets, gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::JointTargetedInference< GUM_SCALAR >::_onJointTargetAdded(), gum::MarginalTargetedInference< GUM_SCALAR >::_setTargetedMode(), gum::JointTargetedInference< GUM_SCALAR >::eraseJointTarget(), and GUM_ERROR.
Referenced by gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact(), and gum::JointTargetedInference< GUM_SCALAR >::jointMutualInformation().
|
finalvirtualinherited |
adds a new list of evidence
UndefinedElement | if some potential is defined over several nodes |
UndefinedElement | if the node on which some potential is defined does not belong to the Bayesian network |
InvalidArgument | if the node of some potential already has an evidence |
FatalError | if pot=[0,0,...,0] |
Definition at line 360 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::addEvidence().
|
finalvirtualinherited |
adds a new set of evidence
UndefinedElement | if some potential is defined over several nodes |
UndefinedElement | if the node on which some potential is defined does not belong to the Bayesian network |
InvalidArgument | if the node of some potential already has an evidence |
FatalError | if pot=[0,0,...,0] |
Definition at line 369 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::addEvidence().
|
finalvirtualinherited |
Add a marginal target to the list of targets.
UndefinedElement | if target is not a NodeId in the Bayes net |
Definition at line 109 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::MarginalTargetedInference< GUM_SCALAR >::__targets, gum::MarginalTargetedInference< GUM_SCALAR >::_onMarginalTargetAdded(), gum::MarginalTargetedInference< GUM_SCALAR >::_setTargetedMode(), gum::Set< Key, Alloc >::contains(), GUM_ERROR, and gum::Set< Key, Alloc >::insert().
Referenced by gum::MarginalTargetedInference< GUM_SCALAR >::addTarget(), and gum::MarginalTargetedInference< GUM_SCALAR >::evidenceImpact().
|
finalvirtualinherited |
Add a marginal target to the list of targets.
UndefinedElement | if target is not a NodeId in the Bayes net |
Definition at line 155 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::MarginalTargetedInference< GUM_SCALAR >::addTarget(), and GUM_ERROR.
|
finalvirtualinherited |
Returns a constant reference over the IBayesNet referenced by this class.
UndefinedElement | is raised if no Bayes net has been assigned to the inference. |
Definition at line 118 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, and GUM_ERROR.
Referenced by gum::WeightedSampling< GUM_SCALAR >::_draw(), gum::MonteCarloSampling< GUM_SCALAR >::_draw(), gum::ImportanceSampling< GUM_SCALAR >::_draw(), gum::SamplingInference< GUM_SCALAR >::_posterior(), gum::BayesNetInference< GUM_SCALAR >::addEvidence(), gum::BayesNetInference< GUM_SCALAR >::chgEvidence(), gum::SamplingInference< GUM_SCALAR >::contextualize(), gum::SamplingInference< GUM_SCALAR >::currentPosterior(), gum::BayesNetInference< GUM_SCALAR >::eraseEvidence(), gum::MarginalTargetedInference< GUM_SCALAR >::evidenceImpact(), gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact(), gum::MarginalTargetedInference< GUM_SCALAR >::H(), gum::BayesNetInference< GUM_SCALAR >::hasEvidence(), gum::BayesNetInference< GUM_SCALAR >::hasHardEvidence(), gum::BayesNetInference< GUM_SCALAR >::hasSoftEvidence(), gum::JointTargetedInference< GUM_SCALAR >::I(), gum::JointTargetedInference< GUM_SCALAR >::jointMutualInformation(), gum::MarginalTargetedInference< GUM_SCALAR >::posterior(), gum::JointTargetedInference< GUM_SCALAR >::posterior(), gum::SamplingInference< GUM_SCALAR >::samplingBN(), and gum::Estimator< GUM_SCALAR >::setFromLBP().
|
finalvirtualinherited |
change the value of an already existing hard evidence
UndefinedElement | if id does not belong to the Bayesian network |
InvalidArgument | if val is not a value for id |
InvalidArgument | if id does not already have an evidence |
Definition at line 429 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__createHardEvidence().
Referenced by gum::BayesNetInference< GUM_SCALAR >::chgEvidence(), gum::MarginalTargetedInference< GUM_SCALAR >::evidenceImpact(), and gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact().
|
finalvirtualinherited |
change the value of an already existing hard evidence
UndefinedElement | if nodeName does not belong to the Bayesian network |
InvalidArgument | if val is not a value for id |
InvalidArgument | if id does not already have an evidence |
Definition at line 437 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::BayesNetInference< GUM_SCALAR >::chgEvidence().
|
finalvirtualinherited |
change the value of an already existing hard evidence
UndefinedElement | if id does not belong to the Bayesian network |
InvalidArgument | if val is not a value for id |
InvalidArgument | if id does not already have an evidence |
Definition at line 445 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::BayesNetInference< GUM_SCALAR >::chgEvidence().
|
finalvirtualinherited |
change the value of an already existing hard evidence
UndefinedElement | if nodeName does not belong to the Bayesian network |
InvalidArgument | if val is not a value for id |
InvalidArgument | if id does not already have an evidence |
Definition at line 453 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::BayesNetInference< GUM_SCALAR >::chgEvidence().
|
finalvirtualinherited |
change the value of an already existing evidence (might be soft or hard)
UndefinedElement | if id does not belong to the Bayesian network |
InvalidArgument | if the node does not already have an evidence |
FatalError | if vals=[0,0,...,0] |
InvalidArgument | if the size of vals is different from the domain size of node id |
Definition at line 461 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::MultiDimDecorator< GUM_SCALAR >::add(), gum::BayesNetInference< GUM_SCALAR >::chgEvidence(), and GUM_ERROR.
|
finalvirtualinherited |
change the value of an already existing evidence (might be soft or hard)
UndefinedElement | if nodeName does not belong to the Bayesian network |
InvalidArgument | if the node does not already have an evidence |
FatalError | if vals=[0,0,...,0] |
InvalidArgument | if the size of vals is different from the domain size of node id |
Definition at line 488 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::BayesNetInference< GUM_SCALAR >::chgEvidence().
|
finalvirtualinherited |
change the value of an already existing evidence (might be soft or hard)
UndefinedElement | if the potential is defined over several nodes |
UndefinedElement | if the node on which the potential is defined does not belong to the Bayesian network |
InvalidArgument | if the node of the potential does not already have an evidence |
FatalError | if pot=[0,0,...,0] |
Definition at line 496 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::BayesNetInference< GUM_SCALAR >::__evidence, gum::BayesNetInference< GUM_SCALAR >::__hard_evidence, gum::BayesNetInference< GUM_SCALAR >::__hard_evidence_nodes, gum::BayesNetInference< GUM_SCALAR >::__isHardEvidence(), gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::BayesNetInference< GUM_SCALAR >::__soft_evidence_nodes, gum::BayesNetInference< GUM_SCALAR >::_onEvidenceChanged(), gum::Instantiation::end(), gum::Set< Key, Alloc >::erase(), GUM_ERROR, gum::BayesNetInference< GUM_SCALAR >::hasEvidence(), gum::BayesNetInference< GUM_SCALAR >::hasHardEvidence(), gum::Instantiation::inc(), gum::Set< Key, Alloc >::insert(), gum::BayesNetInference< GUM_SCALAR >::isInferenceOutdatedBNStructure(), gum::MultiDimDecorator< GUM_SCALAR >::nbrDim(), gum::BayesNetInference< GUM_SCALAR >::OutdatedBNPotentials, gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure, gum::MultiDimDecorator< GUM_SCALAR >::set(), gum::Instantiation::setFirst(), and gum::MultiDimDecorator< GUM_SCALAR >::variable().
|
virtualinherited |
clears all the data structures allocated for the last inference
Definition at line 150 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::BayesNetInference< GUM_SCALAR >::eraseAllEvidence(), and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure.
Referenced by gum::BayesNetInference< GUM_SCALAR >::setBN().
|
finalvirtualinherited |
get the domain sizes of the random variables of the BN
Definition at line 171 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__domain_sizes.
|
finalvirtualinherited |
removes all the evidence entered into the network
Definition at line 592 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__evidence, gum::BayesNetInference< GUM_SCALAR >::__hard_evidence, gum::BayesNetInference< GUM_SCALAR >::__hard_evidence_nodes, gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::BayesNetInference< GUM_SCALAR >::__soft_evidence_nodes, gum::BayesNetInference< GUM_SCALAR >::_onAllEvidenceErased(), gum::Set< Key, Alloc >::clear(), gum::BayesNetInference< GUM_SCALAR >::isInferenceOutdatedBNStructure(), gum::BayesNetInference< GUM_SCALAR >::OutdatedBNPotentials, and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure.
Referenced by gum::BayesNetInference< GUM_SCALAR >::clear(), gum::MarginalTargetedInference< GUM_SCALAR >::evidenceImpact(), gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact(), and gum::JointTargetedInference< GUM_SCALAR >::jointMutualInformation().
|
finalvirtualinherited |
Clear all previously defined joint targets.
Definition at line 94 of file jointTargetedInference_tpl.h.
References gum::JointTargetedInference< GUM_SCALAR >::__joint_targets, gum::BayesNetInference< GUM_SCALAR >::__setState(), and gum::JointTargetedInference< GUM_SCALAR >::_onAllJointTargetsErased().
Referenced by gum::JointTargetedInference< GUM_SCALAR >::eraseAllTargets().
|
finalvirtualinherited |
Clear all the previously defined marginal targets.
Definition at line 87 of file jointTargetedInference_tpl.h.
References gum::MarginalTargetedInference< GUM_SCALAR >::eraseAllTargets().
Referenced by gum::JointTargetedInference< GUM_SCALAR >::eraseAllTargets().
|
virtualinherited |
Clear all previously defined targets (marginal and joint targets)
Clear all previously defined targets. As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
Reimplemented from gum::MarginalTargetedInference< GUM_SCALAR >.
Definition at line 107 of file jointTargetedInference_tpl.h.
References gum::JointTargetedInference< GUM_SCALAR >::eraseAllJointTargets(), and gum::JointTargetedInference< GUM_SCALAR >::eraseAllMarginalTargets().
Referenced by gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact(), and gum::JointTargetedInference< GUM_SCALAR >::jointMutualInformation().
|
finalvirtualinherited |
removed the evidence, if any, corresponding to node id
Definition at line 563 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__evidence, gum::BayesNetInference< GUM_SCALAR >::__hard_evidence, gum::BayesNetInference< GUM_SCALAR >::__hard_evidence_nodes, gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::BayesNetInference< GUM_SCALAR >::__soft_evidence_nodes, gum::BayesNetInference< GUM_SCALAR >::_onEvidenceErased(), gum::Set< Key, Alloc >::erase(), gum::BayesNetInference< GUM_SCALAR >::hasEvidence(), gum::BayesNetInference< GUM_SCALAR >::hasHardEvidence(), gum::BayesNetInference< GUM_SCALAR >::isInferenceOutdatedBNStructure(), gum::BayesNetInference< GUM_SCALAR >::OutdatedBNPotentials, and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure.
Referenced by gum::BayesNetInference< GUM_SCALAR >::eraseEvidence().
|
finalvirtualinherited |
removed the evidence, if any, corresponding to node of name nodeName
Definition at line 585 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::BayesNetInference< GUM_SCALAR >::eraseEvidence().
|
finalvirtualinherited |
removes an existing joint target
Definition at line 158 of file jointTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::JointTargetedInference< GUM_SCALAR >::__joint_targets, gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::JointTargetedInference< GUM_SCALAR >::_onJointTargetErased(), and GUM_ERROR.
Referenced by gum::JointTargetedInference< GUM_SCALAR >::addJointTarget().
|
finalvirtualinherited |
removes an existing (marginal) target
Definition at line 169 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::MarginalTargetedInference< GUM_SCALAR >::__targeted_mode, gum::MarginalTargetedInference< GUM_SCALAR >::__targets, gum::MarginalTargetedInference< GUM_SCALAR >::_onMarginalTargetErased(), gum::Set< Key, Alloc >::contains(), gum::Set< Key, Alloc >::erase(), and GUM_ERROR.
Referenced by gum::MarginalTargetedInference< GUM_SCALAR >::eraseTarget().
|
finalvirtualinherited |
removes an existing (marginal) target
Definition at line 194 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::MarginalTargetedInference< GUM_SCALAR >::eraseTarget(), and GUM_ERROR.
|
inherited |
returns the set of evidence
Definition at line 647 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__evidence.
Referenced by gum::ImportanceSampling< GUM_SCALAR >::_onContextualize(), and gum::MarginalTargetedInference< GUM_SCALAR >::posterior().
|
inherited |
Create a gum::Potential for P(target|evs) (for all instanciation of target and evs)
bn | the BayesNet |
target | the nodeId of the targetted variable |
evs | the vector of nodeId of the observed variables |
Definition at line 282 of file marginalTargetedInference_tpl.h.
References gum::MultiDimDecorator< GUM_SCALAR >::add(), gum::BayesNetInference< GUM_SCALAR >::addEvidence(), gum::MarginalTargetedInference< GUM_SCALAR >::addTarget(), gum::BayesNetInference< GUM_SCALAR >::BN(), gum::BayesNetInference< GUM_SCALAR >::chgEvidence(), gum::Set< Key, Alloc >::contains(), gum::Instantiation::end(), gum::BayesNetInference< GUM_SCALAR >::eraseAllEvidence(), gum::MarginalTargetedInference< GUM_SCALAR >::eraseAllTargets(), GUM_ERROR, gum::Instantiation::incNotVar(), gum::Instantiation::incVar(), gum::BayesNetInference< GUM_SCALAR >::makeInference(), gum::MarginalTargetedInference< GUM_SCALAR >::posterior(), gum::MultiDimDecorator< GUM_SCALAR >::set(), gum::Instantiation::setFirst(), gum::Instantiation::setFirstVar(), and gum::Instantiation::val().
Referenced by gum::MarginalTargetedInference< GUM_SCALAR >::evidenceImpact().
|
inherited |
Create a gum::Potential for P(target|evs) (for all instanciation of target and evs)
target | the nodeId of the target variable |
evs | the nodeId of the observed variable |
Definition at line 321 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), gum::MarginalTargetedInference< GUM_SCALAR >::evidenceImpact(), and gum::Set< Key, Alloc >::insert().
|
inherited |
Create a gum::Potential for P(joint targets|evs) (for all instanciation of targets and evs)
targets | the NodeSet of the targeted variables |
evs | the NodeSet of observed variables |
Definition at line 327 of file jointTargetedInference_tpl.h.
References gum::MultiDimDecorator< GUM_SCALAR >::add(), gum::Instantiation::add(), gum::BayesNetInference< GUM_SCALAR >::addEvidence(), gum::JointTargetedInference< GUM_SCALAR >::addJointTarget(), gum::BayesNetInference< GUM_SCALAR >::BN(), gum::BayesNetInference< GUM_SCALAR >::chgEvidence(), gum::Instantiation::end(), gum::BayesNetInference< GUM_SCALAR >::eraseAllEvidence(), gum::JointTargetedInference< GUM_SCALAR >::eraseAllTargets(), GUM_ERROR, gum::Instantiation::incIn(), gum::Instantiation::incOut(), gum::JointTargetedInference< GUM_SCALAR >::jointPosterior(), gum::BayesNetInference< GUM_SCALAR >::makeInference(), gum::MultiDimDecorator< GUM_SCALAR >::set(), gum::Instantiation::setFirstIn(), gum::Instantiation::setFirstOut(), and gum::Instantiation::val().
Referenced by gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact().
|
inherited |
Create a gum::Potential for P(joint targets|evs) (for all instanciation of targets and evs)
targets | the vector of std::string of the targeted variables |
evs | the vector of std::string of observed variables |
Definition at line 370 of file jointTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact(), and gum::Set< Key, Alloc >::insert().
|
finalvirtualinherited |
Entropy Compute Shanon's entropy of a node given the observation.
Definition at line 266 of file marginalTargetedInference_tpl.h.
References gum::MarginalTargetedInference< GUM_SCALAR >::posterior().
Referenced by gum::MarginalTargetedInference< GUM_SCALAR >::H(), and gum::JointTargetedInference< GUM_SCALAR >::VI().
|
finalvirtualinherited |
Entropy Compute Shanon's entropy of a node given the observation.
Definition at line 275 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::MarginalTargetedInference< GUM_SCALAR >::H().
|
inherited |
indicate for each node with hard evidence which value it took
Definition at line 639 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__hard_evidence.
Referenced by gum::WeightedSampling< GUM_SCALAR >::_draw(), gum::MonteCarloSampling< GUM_SCALAR >::_draw(), gum::ImportanceSampling< GUM_SCALAR >::_draw(), and gum::SamplingInference< GUM_SCALAR >::contextualize().
|
inherited |
returns the set of nodes with hard evidence
the set of nodes that received hard evidence
Definition at line 663 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__hard_evidence_nodes.
Referenced by gum::WeightedSampling< GUM_SCALAR >::_draw(), gum::MonteCarloSampling< GUM_SCALAR >::_draw(), gum::ImportanceSampling< GUM_SCALAR >::_draw(), gum::ImportanceSampling< GUM_SCALAR >::_onContextualize(), gum::SamplingInference< GUM_SCALAR >::_setEstimatorFromBN(), gum::SamplingInference< GUM_SCALAR >::_setEstimatorFromLBP(), gum::SamplingInference< GUM_SCALAR >::contextualize(), and gum::MarginalTargetedInference< GUM_SCALAR >::posterior().
|
finalvirtualinherited |
indicates whether some node(s) have received evidence
Definition at line 378 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__evidence.
Referenced by gum::BayesNetInference< GUM_SCALAR >::addEvidence(), gum::BayesNetInference< GUM_SCALAR >::chgEvidence(), gum::BayesNetInference< GUM_SCALAR >::eraseEvidence(), and gum::BayesNetInference< GUM_SCALAR >::hasEvidence().
|
finalvirtualinherited |
indicates whether node id has received an evidence
Definition at line 385 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__evidence.
|
finalvirtualinherited |
indicates whether node id has received an evidence
Definition at line 406 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::BayesNetInference< GUM_SCALAR >::hasEvidence().
|
finalvirtualinherited |
indicates whether node id has received a hard evidence
Definition at line 392 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__hard_evidence_nodes, and gum::Set< Key, Alloc >::exists().
Referenced by gum::ImportanceSampling< GUM_SCALAR >::_draw(), gum::BayesNetInference< GUM_SCALAR >::chgEvidence(), gum::BayesNetInference< GUM_SCALAR >::eraseEvidence(), and gum::BayesNetInference< GUM_SCALAR >::hasHardEvidence().
|
finalvirtualinherited |
indicates whether node id has received a hard evidence
Definition at line 414 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::BayesNetInference< GUM_SCALAR >::hasHardEvidence().
|
finalvirtualinherited |
indicates whether node id has received a soft evidence
Definition at line 399 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__soft_evidence_nodes, and gum::Set< Key, Alloc >::exists().
Referenced by gum::BayesNetInference< GUM_SCALAR >::hasSoftEvidence().
|
finalvirtualinherited |
indicates whether node id has received a soft evidence
Definition at line 422 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::BayesNetInference< GUM_SCALAR >::hasSoftEvidence().
|
inherited |
Mutual information between X and Y.
OperationNotAllowed | in these cases |
Definition at line 269 of file jointTargetedInference_tpl.h.
References gum::JointTargetedInference< GUM_SCALAR >::_unnormalizedJointPosterior(), gum::BayesNetInference< GUM_SCALAR >::BN(), gum::Instantiation::end(), GUM_ERROR, gum::Potential< GUM_SCALAR >::margSumOut(), gum::Potential< GUM_SCALAR >::normalize(), and gum::Instantiation::setFirst().
Referenced by gum::JointTargetedInference< GUM_SCALAR >::VI().
|
finalvirtualnoexceptinherited |
returns whether the inference object is in a done state
The inference object is in a done state when the posteriors can be retrieved without performing a new inference, i.e., all the heavy computations have already been performed. Typically, in a junction tree algorithm, this corresponds to a situation in which all the messages needed in the JT have been computed and sent.
Definition at line 93 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__state, and gum::BayesNetInference< GUM_SCALAR >::Done.
Referenced by gum::JointTargetedInference< GUM_SCALAR >::jointPosterior(), gum::BayesNetInference< GUM_SCALAR >::makeInference(), gum::MarginalTargetedInference< GUM_SCALAR >::posterior(), and gum::BayesNetInference< GUM_SCALAR >::prepareInference().
|
finalvirtualnoexceptinherited |
returns whether the inference object is in a InferenceDone state
Definition at line 86 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__state, and gum::BayesNetInference< GUM_SCALAR >::Done.
|
finalvirtualnoexceptinherited |
returns whether the inference object is in a OutdatedBNPotential state
Definition at line 80 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__state, and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNPotentials.
|
finalvirtualnoexceptinherited |
returns whether the inference object is in a OutdatedBNStructure state
Definition at line 73 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__state, and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure.
Referenced by gum::BayesNetInference< GUM_SCALAR >::chgEvidence(), gum::BayesNetInference< GUM_SCALAR >::eraseAllEvidence(), and gum::BayesNetInference< GUM_SCALAR >::eraseEvidence().
|
finalvirtualnoexceptinherited |
returns whether the inference object is in a ready state
Definition at line 67 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__state, and gum::BayesNetInference< GUM_SCALAR >::ReadyForInference.
Referenced by gum::SamplingInference< GUM_SCALAR >::_onStateChanged(), gum::BayesNetInference< GUM_SCALAR >::makeInference(), and gum::BayesNetInference< GUM_SCALAR >::prepareInference().
|
finalvirtualinherited |
return true if target is a joint target.
Definition at line 67 of file jointTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::JointTargetedInference< GUM_SCALAR >::__joint_targets, and GUM_ERROR.
|
finalvirtualinherited |
return true if variable is a (marginal) target
Definition at line 73 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::MarginalTargetedInference< GUM_SCALAR >::__targets, gum::Set< Key, Alloc >::contains(), and GUM_ERROR.
Referenced by gum::MarginalTargetedInference< GUM_SCALAR >::isTarget(), gum::MarginalTargetedInference< GUM_SCALAR >::posterior(), and gum::JointTargetedInference< GUM_SCALAR >::posterior().
|
finalvirtualinherited |
return true if variable is a (marginal) target
Definition at line 88 of file marginalTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, and gum::MarginalTargetedInference< GUM_SCALAR >::isTarget().
|
inherited |
Mutual information between targets.
targets | the NodeSet of the targeted variables |
Definition at line 390 of file jointTargetedInference_tpl.h.
References gum::Instantiation::add(), gum::JointTargetedInference< GUM_SCALAR >::addJointTarget(), gum::BayesNetInference< GUM_SCALAR >::BN(), gum::Set< Key, Alloc >::clear(), gum::Instantiation::end(), gum::BayesNetInference< GUM_SCALAR >::eraseAllEvidence(), gum::JointTargetedInference< GUM_SCALAR >::eraseAllTargets(), GUM_ERROR, gum::Instantiation::inc(), gum::Set< Key, Alloc >::insert(), gum::JointTargetedInference< GUM_SCALAR >::jointPosterior(), gum::BayesNetInference< GUM_SCALAR >::makeInference(), gum::Instantiation::nbrDim(), gum::Instantiation::setFirst(), gum::Set< Key, Alloc >::size(), gum::Instantiation::val(), and gum::Instantiation::variable().
Referenced by gum::JointTargetedInference< GUM_SCALAR >::jointMutualInformation().
|
inherited |
Mutual information between targets.
targets | the vector of std::string of the targeted variables |
Definition at line 442 of file jointTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), gum::Set< Key, Alloc >::insert(), and gum::JointTargetedInference< GUM_SCALAR >::jointMutualInformation().
|
finalvirtualinherited |
Compute the joint posterior of a set of nodes.
nodes | the set of nodes whose posterior joint probability is wanted |
UndefinedElement | if nodes is not in the targets |
Definition at line 209 of file jointTargetedInference_tpl.h.
References gum::JointTargetedInference< GUM_SCALAR >::__joint_targets, gum::JointTargetedInference< GUM_SCALAR >::_jointPosterior(), GUM_ERROR, gum::BayesNetInference< GUM_SCALAR >::isDone(), gum::Set< Key, Alloc >::isSubsetOf(), and gum::BayesNetInference< GUM_SCALAR >::makeInference().
Referenced by gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact(), gum::JointTargetedInference< GUM_SCALAR >::jointMutualInformation(), and gum::JointTargetedInference< GUM_SCALAR >::posterior().
|
finalvirtualnoexceptinherited |
returns the list of joint targets
returns the list of target sets
Definition at line 190 of file jointTargetedInference_tpl.h.
References gum::JointTargetedInference< GUM_SCALAR >::__joint_targets.
const JunctionTree* gum::VariableElimination< GUM_SCALAR >::junctionTree | ( | NodeId | id | ) |
returns the join tree used for compute the posterior of node id
|
finalvirtualinherited |
perform the heavy computations needed to compute the targets' posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done "lightly" by multiplying and projecting those messages.
Definition at line 708 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::BayesNetInference< GUM_SCALAR >::_makeInference(), gum::BayesNetInference< GUM_SCALAR >::Done, gum::BayesNetInference< GUM_SCALAR >::isDone(), gum::BayesNetInference< GUM_SCALAR >::isInferenceReady(), and gum::BayesNetInference< GUM_SCALAR >::prepareInference().
Referenced by gum::LoopySamplingInference< GUM_SCALAR, APPROX >::_makeInference(), gum::MCBayesNetGenerator< GUM_SCALAR, ICPTGenerator, ICPTDisturber >::disturbBN(), gum::MarginalTargetedInference< GUM_SCALAR >::evidenceImpact(), gum::JointTargetedInference< GUM_SCALAR >::evidenceJointImpact(), gum::JointTargetedInference< GUM_SCALAR >::jointMutualInformation(), gum::JointTargetedInference< GUM_SCALAR >::jointPosterior(), and gum::MarginalTargetedInference< GUM_SCALAR >::posterior().
|
finalvirtualinherited |
returns the number of evidence entered into the Bayesian network
Definition at line 617 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__evidence.
|
finalvirtualinherited |
returns the number of hard evidence entered into the Bayesian network
Definition at line 624 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__hard_evidence_nodes, and gum::Set< Key, Alloc >::size().
|
finalvirtualnoexceptinherited |
returns the number of joint targets
returns the number of target sets
Definition at line 196 of file jointTargetedInference_tpl.h.
References gum::JointTargetedInference< GUM_SCALAR >::__joint_targets.
|
finalvirtualinherited |
returns the number of soft evidence entered into the Bayesian network
Definition at line 631 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__soft_evidence_nodes, and gum::Set< Key, Alloc >::size().
|
finalvirtualnoexceptinherited |
returns the number of marginal targets
Definition at line 215 of file marginalTargetedInference_tpl.h.
References gum::MarginalTargetedInference< GUM_SCALAR >::__targets, and gum::Set< Key, Alloc >::size().
|
delete |
avoid copy operators
|
finalvirtualinherited |
Computes and returns the posterior of a node.
node | the node for which we need a posterior probability |
UndefinedElement | if node is not in the set of targets |
Reimplemented from gum::MarginalTargetedInference< GUM_SCALAR >.
Definition at line 243 of file jointTargetedInference_tpl.h.
References gum::MarginalTargetedInference< GUM_SCALAR >::isTarget(), gum::JointTargetedInference< GUM_SCALAR >::jointPosterior(), and gum::MarginalTargetedInference< GUM_SCALAR >::posterior().
Referenced by gum::MCBayesNetGenerator< GUM_SCALAR, ICPTGenerator, ICPTDisturber >::disturbBN(), and gum::JointTargetedInference< GUM_SCALAR >::posterior().
|
finalvirtualinherited |
Computes and returns the posterior of a node.
node | the node for which we need a posterior probability |
UndefinedElement | if node is not in the set of targets |
Reimplemented from gum::MarginalTargetedInference< GUM_SCALAR >.
Definition at line 253 of file jointTargetedInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::BN(), and gum::JointTargetedInference< GUM_SCALAR >::posterior().
|
finalvirtualinherited |
prepare the internal inference structures for the next inference
Definition at line 689 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::BayesNetInference< GUM_SCALAR >::__state, gum::BayesNetInference< GUM_SCALAR >::_updateOutdatedBNPotentials(), gum::BayesNetInference< GUM_SCALAR >::_updateOutdatedBNStructure(), GUM_ERROR, gum::BayesNetInference< GUM_SCALAR >::isDone(), gum::BayesNetInference< GUM_SCALAR >::isInferenceReady(), gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure, and gum::BayesNetInference< GUM_SCALAR >::ReadyForInference.
Referenced by gum::BayesNetInference< GUM_SCALAR >::makeInference(), and gum::SamplingInference< GUM_SCALAR >::samplingBN().
|
virtualinherited |
assigns a new BN to the inference engine
Assigns a new BN to the BayesNetInference engine and sends messages to the descendants of BayesNetInference to inform them that the BN has changed.
Definition at line 129 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__bn, gum::BayesNetInference< GUM_SCALAR >::__computeDomainSizes(), gum::BayesNetInference< GUM_SCALAR >::__setState(), gum::BayesNetInference< GUM_SCALAR >::_onBayesNetChanged(), gum::BayesNetInference< GUM_SCALAR >::clear(), and gum::BayesNetInference< GUM_SCALAR >::OutdatedBNStructure.
void gum::VariableElimination< GUM_SCALAR >::setFindBarrenNodesType | ( | FindBarrenNodesType | type | ) |
sets how we determine barren nodes
Barren nodes are unnecessary for probability inference, so they can be safely discarded in this case (type = FIND_BARREN_NODES). This speeds-up inference. However, there are some cases in which we do not want to remove barren nodes, typically when we want to answer queries such as Most Probable Explanations (MPE).
void gum::VariableElimination< GUM_SCALAR >::setRelevantPotentialsFinderType | ( | RelevantPotentialsFinderType | type | ) |
sets how we determine the relevant potentials to combine
When a clique sends a message to a separator, it first constitute the set of the potentials it contains and of the potentials contained in the messages it received. If RelevantPotentialsFinderType = FIND_ALL, all these potentials are combined and projected to produce the message sent to the separator. If RelevantPotentialsFinderType = DSEP_BAYESBALL_NODES, then only the set of potentials d-connected to the variables of the separator are kept for combination and projection.
void gum::VariableElimination< GUM_SCALAR >::setTriangulation | ( | const Triangulation & | new_triangulation | ) |
use a new triangulation algorithm
|
inherited |
returns the set of nodes with soft evidence
the set of nodes that received soft evidence
Definition at line 655 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__soft_evidence_nodes.
Referenced by gum::SamplingInference< GUM_SCALAR >::contextualize().
|
finalvirtualnoexceptinherited |
returns the state of the inference engine
Definition at line 101 of file BayesNetInference_tpl.h.
References gum::BayesNetInference< GUM_SCALAR >::__state.
Referenced by gum::BayesNetInference< GUM_SCALAR >::__setState().
|
finalvirtualnoexceptinherited |
returns the list of marginal targets
Definition at line 208 of file marginalTargetedInference_tpl.h.
References gum::MarginalTargetedInference< GUM_SCALAR >::__targets.
Referenced by gum::SamplingInference< GUM_SCALAR >::contextualize().
|
inherited |
Variation of information between X and Y.
OperationNotAllowed | in these cases |
OperationNotAllowed | in these cases |
Definition at line 320 of file jointTargetedInference_tpl.h.
References gum::MarginalTargetedInference< GUM_SCALAR >::H(), and gum::JointTargetedInference< GUM_SCALAR >::I().
|
private |
for comparisons with 1 - epsilon
Definition at line 280 of file variableElimination.h.
|
private |
the type of barren nodes computation we wish
Definition at line 240 of file variableElimination.h.
|
private |
for each BN node, indicate in which clique its CPT will be stored
Definition at line 270 of file variableElimination.h.
|
inlineprivate |
the operator for performing the combinations
Definition at line 248 of file variableElimination.h.
|
private |
the type of relevant potential finding algorithm to be used
Definition at line 231 of file variableElimination.h.
|
private |
update a set of potentials: the remaining are those to be combined to produce a message on a separator
Definition at line 235 of file variableElimination.h.
|
private |
the undigraph extracted from the BN and used to construct the join tree
If all nodes are targets, this graph corresponds to the moral graph of the BN. Otherwise, it may be a subgraph of this moral graph. For instance if the BN is A->B->C and only B is a target, __graph will be equal to A-B if we exploit barren nodes (C is a barren node and, therefore, can be removed for inference).
Definition at line 261 of file variableElimination.h.
|
private |
the junction tree used to answer the last inference query
Definition at line 264 of file variableElimination.h.
|
private |
for each node of __graph (~ in the Bayes net), associate an ID in the JT
Definition at line 267 of file variableElimination.h.
|
inlineprivate |
the operator for performing the projections
Definition at line 243 of file variableElimination.h.
|
private |
the posterior computed during the last inference
the posterior is owned by VariableElimination.
Definition at line 277 of file variableElimination.h.
|
private |
indicate a clique that contains all the nodes of the target
Definition at line 273 of file variableElimination.h.
|
private |
the triangulation class creating the junction tree used for inference
Definition at line 250 of file variableElimination.h.