aGrUM  0.14.2
gum::learning::DAG2BNLearner< ALLOC > Class Template Reference

A class that, given a structure and a parameter estimator returns a full Bayes net. More...

#include <agrum/learning/paramUtils/DAG2BNLearner.h>

+ Inheritance diagram for gum::learning::DAG2BNLearner< ALLOC >:
+ Collaboration diagram for gum::learning::DAG2BNLearner< ALLOC >:

Public Attributes

Signaler3< Size, double, doubleonProgress
 Progression, error and time. More...
 
Signaler1< std::string > onStop
 Criteria messageApproximationScheme. More...
 

Public Member Functions

Constructors / Destructors
 DAG2BNLearner (const allocator_type &alloc=allocator_type())
 default constructor More...
 
 DAG2BNLearner (const DAG2BNLearner< ALLOC > &from)
 copy constructor More...
 
 DAG2BNLearner (const DAG2BNLearner< ALLOC > &from, const allocator_type &alloc)
 copy constructor with a given allocator More...
 
 DAG2BNLearner (DAG2BNLearner< ALLOC > &&from)
 move constructor More...
 
 DAG2BNLearner (DAG2BNLearner< ALLOC > &&from, const allocator_type &alloc)
 move constructor with a given allocator More...
 
virtual DAG2BNLearner< ALLOC > * clone () const
 virtual copy constructor More...
 
virtual DAG2BNLearner< ALLOC > * clone (const allocator_type &alloc) const
 virtual copy constructor with a given allocator More...
 
virtual ~DAG2BNLearner ()
 destructor More...
 
Operators
DAG2BNLearner< ALLOC > & operator= (const DAG2BNLearner< ALLOC > &from)
 copy operator More...
 
DAG2BNLearner< ALLOC > & operator= (DAG2BNLearner< ALLOC > &&from)
 move operator More...
 
Getters and setters
void setEpsilon (double eps)
 Given that we approximate f(t), stopping criterion on |f(t+1)-f(t)|. More...
 
double epsilon () const
 Returns the value of epsilon. More...
 
void disableEpsilon ()
 Disable stopping criterion on epsilon. More...
 
void enableEpsilon ()
 Enable stopping criterion on epsilon. More...
 
bool isEnabledEpsilon () const
 Returns true if stopping criterion on epsilon is enabled, false otherwise. More...
 
void setMinEpsilonRate (double rate)
 Given that we approximate f(t), stopping criterion on d/dt(|f(t+1)-f(t)|). More...
 
double minEpsilonRate () const
 Returns the value of the minimal epsilon rate. More...
 
void disableMinEpsilonRate ()
 Disable stopping criterion on epsilon rate. More...
 
void enableMinEpsilonRate ()
 Enable stopping criterion on epsilon rate. More...
 
bool isEnabledMinEpsilonRate () const
 Returns true if stopping criterion on epsilon rate is enabled, false otherwise. More...
 
void setMaxIter (Size max)
 Stopping criterion on number of iterations. More...
 
Size maxIter () const
 Returns the criterion on number of iterations. More...
 
void disableMaxIter ()
 Disable stopping criterion on max iterations. More...
 
void enableMaxIter ()
 Enable stopping criterion on max iterations. More...
 
bool isEnabledMaxIter () const
 Returns true if stopping criterion on max iterations is enabled, false otherwise. More...
 
void setMaxTime (double timeout)
 Stopping criterion on timeout. More...
 
double maxTime () const
 Returns the timeout (in seconds). More...
 
double currentTime () const
 Returns the current running time in second. More...
 
void disableMaxTime ()
 Disable stopping criterion on timeout. More...
 
void enableMaxTime ()
 Enable stopping criterion on timeout. More...
 
bool isEnabledMaxTime () const
 Returns true if stopping criterion on timeout is enabled, false otherwise. More...
 
void setPeriodSize (Size p)
 How many samples between two stopping is enable. More...
 
Size periodSize () const
 Returns the period size. More...
 
void setVerbosity (bool v)
 Set the verbosity on (true) or off (false). More...
 
bool verbosity () const
 Returns true if verbosity is enabled. More...
 
ApproximationSchemeSTATE stateApproximationScheme () const
 Returns the approximation scheme state. More...
 
Size nbrIterations () const
 Returns the number of iterations. More...
 
const std::vector< double > & history () const
 Returns the scheme history. More...
 
void initApproximationScheme ()
 Initialise the scheme. More...
 
bool startOfPeriod ()
 Returns true if we are at the beginning of a period (compute error is mandatory). More...
 
void updateApproximationScheme (unsigned int incr=1)
 Update the scheme w.r.t the new error and increment steps. More...
 
Size remainingBurnIn ()
 Returns the remaining burn in. More...
 
void stopApproximationScheme ()
 Stop the approximation scheme. More...
 
bool continueApproximationScheme (double error)
 Update the scheme w.r.t the new error. More...
 
Getters and setters
std::string messageApproximationScheme () const
 Returns the approximation scheme message. More...
 

Public Types

using allocator_type = ALLOC< NodeId >
 type for the allocators passed in arguments of methods More...
 
enum  ApproximationSchemeSTATE : char {
  ApproximationSchemeSTATE::Undefined, ApproximationSchemeSTATE::Continue, ApproximationSchemeSTATE::Epsilon, ApproximationSchemeSTATE::Rate,
  ApproximationSchemeSTATE::Limit, ApproximationSchemeSTATE::TimeLimit, ApproximationSchemeSTATE::Stopped
}
 The different state of an approximation scheme. More...
 

Protected Attributes

double _current_epsilon
 Current epsilon. More...
 
double _last_epsilon
 Last epsilon value. More...
 
double _current_rate
 Current rate. More...
 
Size _current_step
 The current step. More...
 
Timer _timer
 The timer. More...
 
ApproximationSchemeSTATE _current_state
 The current state. More...
 
std::vector< double_history
 The scheme history, used only if verbosity == true. More...
 
double _eps
 Threshold for convergence. More...
 
bool _enabled_eps
 If true, the threshold convergence is enabled. More...
 
double _min_rate_eps
 Threshold for the epsilon rate. More...
 
bool _enabled_min_rate_eps
 If true, the minimal threshold for epsilon rate is enabled. More...
 
double _max_time
 The timeout. More...
 
bool _enabled_max_time
 If true, the timeout is enabled. More...
 
Size _max_iter
 The maximum iterations. More...
 
bool _enabled_max_iter
 If true, the maximum iterations stopping criterion is enabled. More...
 
Size _burn_in
 Number of iterations before checking stopping criteria. More...
 
Size _period_size
 Checking criteria frequency. More...
 
bool _verbosity
 If true, verbosity is enabled. More...
 

Accessors / Modifiers

template<typename GUM_SCALAR = double>
BayesNet< GUM_SCALAR > createBN (ParamEstimator< ALLOC > &bootstrap_estimator, ParamEstimator< ALLOC > &general_estimator, const DAG &dag)
 create a BN from a DAG using a two pass generator (typically EM) More...
 
ApproximationSchemeapproximationScheme ()
 returns the approximation policy of the learning algorithm More...
 
allocator_type getAllocator () const
 returns the allocator used by the score More...
 
template<typename GUM_SCALAR = double>
static BayesNet< GUM_SCALAR > createBN (ParamEstimator< ALLOC > &estimator, const DAG &dag)
 create a BN from a DAG using a one pass generator (typically ML) More...
 

Detailed Description

template<template< typename > class ALLOC = std::allocator>
class gum::learning::DAG2BNLearner< ALLOC >

A class that, given a structure and a parameter estimator returns a full Bayes net.

Definition at line 49 of file DAG2BNLearner.h.

Member Typedef Documentation

◆ allocator_type

template<template< typename > class ALLOC = std::allocator>
using gum::learning::DAG2BNLearner< ALLOC >::allocator_type = ALLOC< NodeId >

type for the allocators passed in arguments of methods

Definition at line 54 of file DAG2BNLearner.h.

Member Enumeration Documentation

◆ ApproximationSchemeSTATE

The different state of an approximation scheme.

Enumerator
Undefined 
Continue 
Epsilon 
Rate 
Limit 
TimeLimit 
Stopped 

Definition at line 63 of file IApproximationSchemeConfiguration.h.

63  : char {
64  Undefined,
65  Continue,
66  Epsilon,
67  Rate,
68  Limit,
69  TimeLimit,
70  Stopped
71  };

Constructor & Destructor Documentation

◆ DAG2BNLearner() [1/5]

template<template< typename > class ALLOC = std::allocator>
gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner ( const allocator_type alloc = allocator_type())

default constructor

Referenced by gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner(), and gum::learning::DAG2BNLearner< ALLOC >::getAllocator().

+ Here is the caller graph for this function:

◆ DAG2BNLearner() [2/5]

template<template< typename > class ALLOC>
gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner ( const DAG2BNLearner< ALLOC > &  from)

copy constructor

Definition at line 66 of file DAG2BNLearner_tpl.h.

References gum::ApproximationScheme::ApproximationScheme(), and gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner().

66  :
67  DAG2BNLearner(from, from.getAllocator()) {}
DAG2BNLearner(const allocator_type &alloc=allocator_type())
default constructor
+ Here is the call graph for this function:

◆ DAG2BNLearner() [3/5]

template<template< typename > class ALLOC = std::allocator>
gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner ( const DAG2BNLearner< ALLOC > &  from,
const allocator_type alloc 
)

copy constructor with a given allocator

◆ DAG2BNLearner() [4/5]

template<template< typename > class ALLOC>
gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner ( DAG2BNLearner< ALLOC > &&  from)

move constructor

Definition at line 83 of file DAG2BNLearner_tpl.h.

References gum::learning::DAG2BNLearner< ALLOC >::clone().

83  :
84  DAG2BNLearner(std::move(from), from.getAllocator()) {}
DAG2BNLearner(const allocator_type &alloc=allocator_type())
default constructor
+ Here is the call graph for this function:

◆ DAG2BNLearner() [5/5]

template<template< typename > class ALLOC = std::allocator>
gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner ( DAG2BNLearner< ALLOC > &&  from,
const allocator_type alloc 
)

move constructor with a given allocator

◆ ~DAG2BNLearner()

template<template< typename > class ALLOC>
gum::learning::DAG2BNLearner< ALLOC >::~DAG2BNLearner ( )
virtual

destructor

Definition at line 113 of file DAG2BNLearner_tpl.h.

References gum::learning::DAG2BNLearner< ALLOC >::operator=().

113  {
114  GUM_DESTRUCTOR(DAG2BNLearner);
115  }
DAG2BNLearner(const allocator_type &alloc=allocator_type())
default constructor
+ Here is the call graph for this function:

Member Function Documentation

◆ approximationScheme()

template<template< typename > class ALLOC>
INLINE ApproximationScheme & gum::learning::DAG2BNLearner< ALLOC >::approximationScheme ( )

returns the approximation policy of the learning algorithm

Definition at line 272 of file DAG2BNLearner_tpl.h.

272  {
273  return *this;
274  }

◆ clone() [1/2]

template<template< typename > class ALLOC>
DAG2BNLearner< ALLOC > * gum::learning::DAG2BNLearner< ALLOC >::clone ( ) const
virtual

virtual copy constructor

Definition at line 106 of file DAG2BNLearner_tpl.h.

References gum::learning::DAG2BNLearner< ALLOC >::getAllocator().

Referenced by gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner().

106  {
107  return clone(this->getAllocator());
108  }
allocator_type getAllocator() const
returns the allocator used by the score
virtual DAG2BNLearner< ALLOC > * clone() const
virtual copy constructor
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ clone() [2/2]

template<template< typename > class ALLOC = std::allocator>
virtual DAG2BNLearner< ALLOC >* gum::learning::DAG2BNLearner< ALLOC >::clone ( const allocator_type alloc) const
virtual

virtual copy constructor with a given allocator

◆ continueApproximationScheme()

INLINE bool gum::ApproximationScheme::continueApproximationScheme ( double  error)
inherited

Update the scheme w.r.t the new error.

Test the stopping criterion that are enabled.

Parameters
errorThe new error value.
Returns
false if state become != ApproximationSchemeSTATE::Continue
Exceptions
OperationNotAllowedRaised if state != ApproximationSchemeSTATE::Continue.

Definition at line 225 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_current_epsilon, gum::ApproximationScheme::_current_rate, gum::ApproximationScheme::_current_state, gum::ApproximationScheme::_current_step, gum::ApproximationScheme::_enabled_eps, gum::ApproximationScheme::_enabled_max_iter, gum::ApproximationScheme::_enabled_max_time, gum::ApproximationScheme::_enabled_min_rate_eps, gum::ApproximationScheme::_eps, gum::ApproximationScheme::_history, gum::ApproximationScheme::_last_epsilon, gum::ApproximationScheme::_max_iter, gum::ApproximationScheme::_max_time, gum::ApproximationScheme::_min_rate_eps, gum::ApproximationScheme::_stopScheme(), gum::ApproximationScheme::_timer, gum::IApproximationSchemeConfiguration::Continue, gum::IApproximationSchemeConfiguration::Epsilon, GUM_EMIT3, GUM_ERROR, gum::IApproximationSchemeConfiguration::Limit, gum::IApproximationSchemeConfiguration::messageApproximationScheme(), gum::IApproximationSchemeConfiguration::onProgress, gum::IApproximationSchemeConfiguration::Rate, gum::ApproximationScheme::startOfPeriod(), gum::ApproximationScheme::stateApproximationScheme(), gum::Timer::step(), gum::IApproximationSchemeConfiguration::TimeLimit, and gum::ApproximationScheme::verbosity().

Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), gum::SamplingInference< GUM_SCALAR >::_loopApproxInference(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::learning::GreedyHillClimbing::learnStructure(), gum::learning::LocalSearchWithTabuList::learnStructure(), and gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::makeInference().

225  {
226  // For coherence, we fix the time used in the method
227 
228  double timer_step = _timer.step();
229 
230  if (_enabled_max_time) {
231  if (timer_step > _max_time) {
233  return false;
234  }
235  }
236 
237  if (!startOfPeriod()) { return true; }
238 
240  GUM_ERROR(OperationNotAllowed,
241  "state of the approximation scheme is not correct : "
243  }
244 
245  if (verbosity()) { _history.push_back(error); }
246 
247  if (_enabled_max_iter) {
248  if (_current_step > _max_iter) {
250  return false;
251  }
252  }
253 
255  _current_epsilon = error; // eps rate isEnabled needs it so affectation was
256  // moved from eps isEnabled below
257 
258  if (_enabled_eps) {
259  if (_current_epsilon <= _eps) {
261  return false;
262  }
263  }
264 
265  if (_last_epsilon >= 0.) {
266  if (_current_epsilon > .0) {
267  // ! _current_epsilon can be 0. AND epsilon
268  // isEnabled can be disabled !
269  _current_rate =
271  }
272  // limit with current eps ---> 0 is | 1 - ( last_eps / 0 ) | --->
273  // infinity the else means a return false if we isEnabled the rate below,
274  // as we would have returned false if epsilon isEnabled was enabled
275  else {
277  }
278 
279  if (_enabled_min_rate_eps) {
280  if (_current_rate <= _min_rate_eps) {
282  return false;
283  }
284  }
285  }
286 
288  if (onProgress.hasListener()) {
290  }
291 
292  return true;
293  } else {
294  return false;
295  }
296  }
double step() const
Returns the delta time between now and the last reset() call (or the constructor).
Definition: timer_inl.h:39
Signaler3< Size, double, double > onProgress
Progression, error and time.
bool _enabled_max_iter
If true, the maximum iterations stopping criterion is enabled.
bool _enabled_eps
If true, the threshold convergence is enabled.
void _stopScheme(ApproximationSchemeSTATE new_state)
Stop the scheme given a new state.
double _current_epsilon
Current epsilon.
bool _enabled_min_rate_eps
If true, the minimal threshold for epsilon rate is enabled.
bool startOfPeriod()
Returns true if we are at the beginning of a period (compute error is mandatory). ...
double _eps
Threshold for convergence.
double _current_rate
Current rate.
bool _enabled_max_time
If true, the timeout is enabled.
Size _current_step
The current step.
std::vector< double > _history
The scheme history, used only if verbosity == true.
double _min_rate_eps
Threshold for the epsilon rate.
ApproximationSchemeSTATE stateApproximationScheme() const
Returns the approximation scheme state.
bool verbosity() const
Returns true if verbosity is enabled.
std::string messageApproximationScheme() const
Returns the approximation scheme message.
double _last_epsilon
Last epsilon value.
Size _max_iter
The maximum iterations.
#define GUM_EMIT3(signal, arg1, arg2, arg3)
Definition: signaler3.h:40
ApproximationSchemeSTATE _current_state
The current state.
double _max_time
The timeout.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:52
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ createBN() [1/2]

template<template< typename > class ALLOC>
template<typename GUM_SCALAR >
BayesNet< GUM_SCALAR > gum::learning::DAG2BNLearner< ALLOC >::createBN ( ParamEstimator< ALLOC > &  estimator,
const DAG dag 
)
static

create a BN from a DAG using a one pass generator (typically ML)

create a BN

Definition at line 162 of file DAG2BNLearner_tpl.h.

References gum::BayesNet< GUM_SCALAR >::add(), gum::BayesNet< GUM_SCALAR >::addArc(), gum::ArcGraphPart::arcs(), gum::BayesNet< GUM_SCALAR >::beginTopologyTransformation(), gum::BayesNet< GUM_SCALAR >::cpt(), gum::learning::ParamEstimator< ALLOC >::database(), gum::BayesNet< GUM_SCALAR >::endTopologyTransformation(), gum::BayesNet< GUM_SCALAR >::generateCPT(), gum::VariableNodeMap::get(), gum::learning::ParamEstimator< ALLOC >::nodeId2Columns(), gum::learning::ParamEstimator< ALLOC >::setParameters(), gum::BayesNet< GUM_SCALAR >::variableNodeMap(), and gum::MultiDimDecorator< GUM_SCALAR >::variablesSequence().

163  {
164  BayesNet< GUM_SCALAR > bn;
165 
166  // create a bn with dummy parameters corresponding to the dag
167  const auto& node2cols = estimator.nodeId2Columns();
168  const auto& database = estimator.database();
169  if (node2cols.empty()) {
170  for (const auto id : dag) {
171  bn.add(dynamic_cast< const DiscreteVariable& >(database.variable(id)),
172  id);
173  }
174  } else {
175  for (const auto id : dag) {
176  const std::size_t col = node2cols.second(id);
177  bn.add(dynamic_cast< const DiscreteVariable& >(database.variable(col)),
178  id);
179  }
180  }
181 
182  // add the arcs
183  bn.beginTopologyTransformation();
184  for (const auto& arc : dag.arcs()) {
185  bn.addArc(arc.tail(), arc.head());
186  }
187  bn.endTopologyTransformation();
188 
189  // estimate the parameters
190  const VariableNodeMap& varmap = bn.variableNodeMap();
191  for (const auto id : dag) {
192  try {
193  // get the sequence of variables and make the targets be the last
194  Potential< GUM_SCALAR >& pot =
195  const_cast< Potential< GUM_SCALAR >& >(bn.cpt(id));
196 
197  // get the variables of the CPT of id in the correct order
198  const Sequence< const DiscreteVariable* >& vars =
199  pot.variablesSequence();
200 
201  // setup the estimation
202  std::vector< NodeId > conditioning_ids(vars.size() - 1);
203  for (std::size_t i = std::size_t(1); i < vars.size(); ++i) {
204  conditioning_ids[i - 1] = varmap.get(*(vars[i]));
205  }
206  estimator.setParameters(id, conditioning_ids, pot);
207  } catch (DatabaseError&) { bn.generateCPT(id); }
208  }
209 
210  return bn;
211  }
+ Here is the call graph for this function:

◆ createBN() [2/2]

template<template< typename > class ALLOC>
template<typename GUM_SCALAR >
BayesNet< GUM_SCALAR > gum::learning::DAG2BNLearner< ALLOC >::createBN ( ParamEstimator< ALLOC > &  bootstrap_estimator,
ParamEstimator< ALLOC > &  general_estimator,
const DAG dag 
)

create a BN from a DAG using a two pass generator (typically EM)

create a BN

The bootstrap estimator is used once to provide an inital BN. This one is used by the second estimator. The later is exploited in a loop until the stopping condition is met (max of relative error on every parameter<epsilon)

Definition at line 216 of file DAG2BNLearner_tpl.h.

References gum::ApproximationScheme::continueApproximationScheme(), gum::BayesNet< GUM_SCALAR >::cpt(), gum::DAGmodel::dag(), gum::Instantiation::end(), gum::ApproximationScheme::initApproximationScheme(), gum::learning::ParamEstimator< ALLOC >::setBayesNet(), gum::ApproximationScheme::stopApproximationScheme(), and gum::ApproximationScheme::updateApproximationScheme().

219  {
220  // bootstrap EM by learning an initial model
221  BayesNet< GUM_SCALAR > bn = createBN< GUM_SCALAR >(bootstrap_estimator, dag);
222  general_estimator.setBayesNet(bn);
223 
224  // perform EM
226 
227  GUM_SCALAR delta;
228  do {
229  // bugfix for parallel execution of VariableElimination
230  const auto& xdag = bn.dag();
231  for (const auto node : xdag) {
232  xdag.parents(node);
233  xdag.children(node);
234  }
235 
236  BayesNet< GUM_SCALAR > new_bn =
237  createBN< GUM_SCALAR >(general_estimator, dag);
239 
240  delta = GUM_SCALAR(0.0);
241  for (const auto node : dag) {
242  const auto& old_cpt = bn.cpt(node);
243  const auto& new_cpt = new_bn.cpt(node);
244 
245  Instantiation old_inst(old_cpt);
246  Instantiation new_inst(new_cpt);
247 
248  for (; !old_inst.end(); ++old_inst, ++new_inst) {
249  const GUM_SCALAR old_val = old_cpt.get(old_inst);
250  if (old_val > 0.0) {
251  const GUM_SCALAR new_val = new_cpt.get(new_inst);
252  const GUM_SCALAR diff = new_val - old_val;
253  const auto diffrel =
254  (diff < 0.0) ? (-diff / old_val) : (diff / old_val);
255  if (delta < diffrel) delta = diffrel;
256  }
257  }
258  }
259 
260  bn = std::move(new_bn);
261  } while (continueApproximationScheme(double(delta)));
262 
263  stopApproximationScheme(); // just to be sure of the approximationScheme
264  // has been notified of the end of loop
265 
266  return bn;
267  } // namespace learning
void initApproximationScheme()
Initialise the scheme.
bool continueApproximationScheme(double error)
Update the scheme w.r.t the new error.
void stopApproximationScheme()
Stop the approximation scheme.
void updateApproximationScheme(unsigned int incr=1)
Update the scheme w.r.t the new error and increment steps.
+ Here is the call graph for this function:

◆ currentTime()

INLINE double gum::ApproximationScheme::currentTime ( ) const
virtualinherited

Returns the current running time in second.

Returns
Returns the current running time in second.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 126 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_timer, and gum::Timer::step().

Referenced by gum::learning::genericBNLearner::currentTime().

126 { return _timer.step(); }
double step() const
Returns the delta time between now and the last reset() call (or the constructor).
Definition: timer_inl.h:39
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ disableEpsilon()

INLINE void gum::ApproximationScheme::disableEpsilon ( )
virtualinherited

Disable stopping criterion on epsilon.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 52 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_eps.

Referenced by gum::learning::genericBNLearner::disableEpsilon().

52 { _enabled_eps = false; }
bool _enabled_eps
If true, the threshold convergence is enabled.
+ Here is the caller graph for this function:

◆ disableMaxIter()

INLINE void gum::ApproximationScheme::disableMaxIter ( )
virtualinherited

Disable stopping criterion on max iterations.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 103 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_max_iter.

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), gum::learning::genericBNLearner::disableMaxIter(), and gum::learning::GreedyHillClimbing::GreedyHillClimbing().

103 { _enabled_max_iter = false; }
bool _enabled_max_iter
If true, the maximum iterations stopping criterion is enabled.
+ Here is the caller graph for this function:

◆ disableMaxTime()

INLINE void gum::ApproximationScheme::disableMaxTime ( )
virtualinherited

Disable stopping criterion on timeout.

Returns
Disable stopping criterion on timeout.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 129 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_max_time.

Referenced by gum::learning::genericBNLearner::disableMaxTime(), and gum::learning::GreedyHillClimbing::GreedyHillClimbing().

129 { _enabled_max_time = false; }
bool _enabled_max_time
If true, the timeout is enabled.
+ Here is the caller graph for this function:

◆ disableMinEpsilonRate()

INLINE void gum::ApproximationScheme::disableMinEpsilonRate ( )
virtualinherited

Disable stopping criterion on epsilon rate.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 77 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_min_rate_eps.

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), gum::learning::genericBNLearner::disableMinEpsilonRate(), and gum::learning::GreedyHillClimbing::GreedyHillClimbing().

77  {
78  _enabled_min_rate_eps = false;
79  }
bool _enabled_min_rate_eps
If true, the minimal threshold for epsilon rate is enabled.
+ Here is the caller graph for this function:

◆ enableEpsilon()

INLINE void gum::ApproximationScheme::enableEpsilon ( )
virtualinherited

Enable stopping criterion on epsilon.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 55 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_eps.

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), and gum::learning::genericBNLearner::enableEpsilon().

55 { _enabled_eps = true; }
bool _enabled_eps
If true, the threshold convergence is enabled.
+ Here is the caller graph for this function:

◆ enableMaxIter()

INLINE void gum::ApproximationScheme::enableMaxIter ( )
virtualinherited

Enable stopping criterion on max iterations.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 106 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_max_iter.

Referenced by gum::learning::genericBNLearner::enableMaxIter().

106 { _enabled_max_iter = true; }
bool _enabled_max_iter
If true, the maximum iterations stopping criterion is enabled.
+ Here is the caller graph for this function:

◆ enableMaxTime()

INLINE void gum::ApproximationScheme::enableMaxTime ( )
virtualinherited

Enable stopping criterion on timeout.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 132 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_max_time.

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::CNMonteCarloSampling(), and gum::learning::genericBNLearner::enableMaxTime().

132 { _enabled_max_time = true; }
bool _enabled_max_time
If true, the timeout is enabled.
+ Here is the caller graph for this function:

◆ enableMinEpsilonRate()

INLINE void gum::ApproximationScheme::enableMinEpsilonRate ( )
virtualinherited

Enable stopping criterion on epsilon rate.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 82 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_min_rate_eps.

Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), and gum::learning::genericBNLearner::enableMinEpsilonRate().

82  {
83  _enabled_min_rate_eps = true;
84  }
bool _enabled_min_rate_eps
If true, the minimal threshold for epsilon rate is enabled.
+ Here is the caller graph for this function:

◆ epsilon()

INLINE double gum::ApproximationScheme::epsilon ( ) const
virtualinherited

Returns the value of epsilon.

Returns
Returns the value of epsilon.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 49 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_eps.

Referenced by gum::ImportanceSampling< GUM_SCALAR >::_onContextualize(), and gum::learning::genericBNLearner::epsilon().

49 { return _eps; }
double _eps
Threshold for convergence.
+ Here is the caller graph for this function:

◆ getAllocator()

template<template< typename > class ALLOC>
INLINE DAG2BNLearner< ALLOC >::allocator_type gum::learning::DAG2BNLearner< ALLOC >::getAllocator ( ) const

returns the allocator used by the score

Definition at line 39 of file DAG2BNLearner_tpl.h.

References gum::learning::DAG2BNLearner< ALLOC >::DAG2BNLearner().

Referenced by gum::learning::DAG2BNLearner< ALLOC >::clone().

39  {
40  return *this;
41  }
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ history()

INLINE const std::vector< double > & gum::ApproximationScheme::history ( ) const
virtualinherited

Returns the scheme history.

Returns
Returns the scheme history.
Exceptions
OperationNotAllowedRaised if the scheme did not performed or if verbosity is set to false.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 171 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_history, GUM_ERROR, gum::ApproximationScheme::stateApproximationScheme(), gum::IApproximationSchemeConfiguration::Undefined, and gum::ApproximationScheme::verbosity().

Referenced by gum::learning::genericBNLearner::history().

171  {
173  GUM_ERROR(OperationNotAllowed,
174  "state of the approximation scheme is udefined");
175  }
176 
177  if (verbosity() == false) {
178  GUM_ERROR(OperationNotAllowed, "No history when verbosity=false");
179  }
180 
181  return _history;
182  }
std::vector< double > _history
The scheme history, used only if verbosity == true.
ApproximationSchemeSTATE stateApproximationScheme() const
Returns the approximation scheme state.
bool verbosity() const
Returns true if verbosity is enabled.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:52
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ initApproximationScheme()

INLINE void gum::ApproximationScheme::initApproximationScheme ( )
inherited

Initialise the scheme.

Definition at line 185 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_current_epsilon, gum::ApproximationScheme::_current_rate, gum::ApproximationScheme::_current_state, gum::ApproximationScheme::_current_step, gum::ApproximationScheme::_history, gum::ApproximationScheme::_timer, gum::IApproximationSchemeConfiguration::Continue, and gum::Timer::reset().

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), gum::SamplingInference< GUM_SCALAR >::_loopApproxInference(), gum::SamplingInference< GUM_SCALAR >::_onStateChanged(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::learning::GreedyHillClimbing::learnStructure(), and gum::learning::LocalSearchWithTabuList::learnStructure().

185  {
187  _current_step = 0;
189  _history.clear();
190  _timer.reset();
191  }
double _current_epsilon
Current epsilon.
void reset()
Reset the timer.
Definition: timer_inl.h:29
double _current_rate
Current rate.
Size _current_step
The current step.
std::vector< double > _history
The scheme history, used only if verbosity == true.
ApproximationSchemeSTATE _current_state
The current state.
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ isEnabledEpsilon()

INLINE bool gum::ApproximationScheme::isEnabledEpsilon ( ) const
virtualinherited

Returns true if stopping criterion on epsilon is enabled, false otherwise.

Returns
Returns true if stopping criterion on epsilon is enabled, false otherwise.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 59 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_eps.

Referenced by gum::learning::genericBNLearner::isEnabledEpsilon().

59  {
60  return _enabled_eps;
61  }
bool _enabled_eps
If true, the threshold convergence is enabled.
+ Here is the caller graph for this function:

◆ isEnabledMaxIter()

INLINE bool gum::ApproximationScheme::isEnabledMaxIter ( ) const
virtualinherited

Returns true if stopping criterion on max iterations is enabled, false otherwise.

Returns
Returns true if stopping criterion on max iterations is enabled, false otherwise.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 110 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_max_iter.

Referenced by gum::learning::genericBNLearner::isEnabledMaxIter().

110  {
111  return _enabled_max_iter;
112  }
bool _enabled_max_iter
If true, the maximum iterations stopping criterion is enabled.
+ Here is the caller graph for this function:

◆ isEnabledMaxTime()

INLINE bool gum::ApproximationScheme::isEnabledMaxTime ( ) const
virtualinherited

Returns true if stopping criterion on timeout is enabled, false otherwise.

Returns
Returns true if stopping criterion on timeout is enabled, false otherwise.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 136 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_max_time.

Referenced by gum::learning::genericBNLearner::isEnabledMaxTime().

136  {
137  return _enabled_max_time;
138  }
bool _enabled_max_time
If true, the timeout is enabled.
+ Here is the caller graph for this function:

◆ isEnabledMinEpsilonRate()

INLINE bool gum::ApproximationScheme::isEnabledMinEpsilonRate ( ) const
virtualinherited

Returns true if stopping criterion on epsilon rate is enabled, false otherwise.

Returns
Returns true if stopping criterion on epsilon rate is enabled, false otherwise.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 88 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_min_rate_eps.

Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), and gum::learning::genericBNLearner::isEnabledMinEpsilonRate().

88  {
89  return _enabled_min_rate_eps;
90  }
bool _enabled_min_rate_eps
If true, the minimal threshold for epsilon rate is enabled.
+ Here is the caller graph for this function:

◆ maxIter()

INLINE Size gum::ApproximationScheme::maxIter ( ) const
virtualinherited

Returns the criterion on number of iterations.

Returns
Returns the criterion on number of iterations.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 100 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_max_iter.

Referenced by gum::learning::genericBNLearner::maxIter().

100 { return _max_iter; }
Size _max_iter
The maximum iterations.
+ Here is the caller graph for this function:

◆ maxTime()

INLINE double gum::ApproximationScheme::maxTime ( ) const
virtualinherited

Returns the timeout (in seconds).

Returns
Returns the timeout (in seconds).

Implements gum::IApproximationSchemeConfiguration.

Definition at line 123 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_max_time.

Referenced by gum::learning::genericBNLearner::maxTime().

123 { return _max_time; }
double _max_time
The timeout.
+ Here is the caller graph for this function:

◆ messageApproximationScheme()

INLINE std::string gum::IApproximationSchemeConfiguration::messageApproximationScheme ( ) const
inherited

Returns the approximation scheme message.

Returns
Returns the approximation scheme message.

Definition at line 38 of file IApproximationSchemeConfiguration_inl.h.

References gum::IApproximationSchemeConfiguration::Continue, gum::IApproximationSchemeConfiguration::Epsilon, gum::IApproximationSchemeConfiguration::epsilon(), gum::IApproximationSchemeConfiguration::Limit, gum::IApproximationSchemeConfiguration::maxIter(), gum::IApproximationSchemeConfiguration::maxTime(), gum::IApproximationSchemeConfiguration::minEpsilonRate(), gum::IApproximationSchemeConfiguration::Rate, gum::IApproximationSchemeConfiguration::stateApproximationScheme(), gum::IApproximationSchemeConfiguration::Stopped, gum::IApproximationSchemeConfiguration::TimeLimit, and gum::IApproximationSchemeConfiguration::Undefined.

Referenced by gum::ApproximationScheme::_stopScheme(), gum::ApproximationScheme::continueApproximationScheme(), and gum::credal::InferenceEngine< GUM_SCALAR >::getApproximationSchemeMsg().

38  {
39  std::stringstream s;
40 
41  switch (stateApproximationScheme()) {
42  case ApproximationSchemeSTATE::Continue: s << "in progress"; break;
43 
45  s << "stopped with epsilon=" << epsilon();
46  break;
47 
49  s << "stopped with rate=" << minEpsilonRate();
50  break;
51 
53  s << "stopped with max iteration=" << maxIter();
54  break;
55 
57  s << "stopped with timeout=" << maxTime();
58  break;
59 
60  case ApproximationSchemeSTATE::Stopped: s << "stopped on request"; break;
61 
62  case ApproximationSchemeSTATE::Undefined: s << "undefined state"; break;
63  };
64 
65  return s.str();
66  }
virtual double epsilon() const =0
Returns the value of epsilon.
virtual ApproximationSchemeSTATE stateApproximationScheme() const =0
Returns the approximation scheme state.
virtual double maxTime() const =0
Returns the timeout (in seconds).
virtual Size maxIter() const =0
Returns the criterion on number of iterations.
virtual double minEpsilonRate() const =0
Returns the value of the minimal epsilon rate.
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ minEpsilonRate()

INLINE double gum::ApproximationScheme::minEpsilonRate ( ) const
virtualinherited

Returns the value of the minimal epsilon rate.

Returns
Returns the value of the minimal epsilon rate.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 72 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_min_rate_eps.

Referenced by gum::learning::genericBNLearner::minEpsilonRate().

72  {
73  return _min_rate_eps;
74  }
double _min_rate_eps
Threshold for the epsilon rate.
+ Here is the caller graph for this function:

◆ nbrIterations()

INLINE Size gum::ApproximationScheme::nbrIterations ( ) const
virtualinherited

Returns the number of iterations.

Returns
Returns the number of iterations.
Exceptions
OperationNotAllowedRaised if the scheme did not perform.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 161 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_current_step, GUM_ERROR, gum::ApproximationScheme::stateApproximationScheme(), and gum::IApproximationSchemeConfiguration::Undefined.

Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), and gum::learning::genericBNLearner::nbrIterations().

161  {
163  GUM_ERROR(OperationNotAllowed,
164  "state of the approximation scheme is undefined");
165  }
166 
167  return _current_step;
168  }
Size _current_step
The current step.
ApproximationSchemeSTATE stateApproximationScheme() const
Returns the approximation scheme state.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:52
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ operator=() [1/2]

template<template< typename > class ALLOC>
DAG2BNLearner< ALLOC > & gum::learning::DAG2BNLearner< ALLOC >::operator= ( const DAG2BNLearner< ALLOC > &  from)

copy operator

Definition at line 121 of file DAG2BNLearner_tpl.h.

Referenced by gum::learning::DAG2BNLearner< ALLOC >::~DAG2BNLearner().

121  {
122  ApproximationScheme::operator=(from);
123  return *this;
124  }
+ Here is the caller graph for this function:

◆ operator=() [2/2]

template<template< typename > class ALLOC>
DAG2BNLearner< ALLOC > & gum::learning::DAG2BNLearner< ALLOC >::operator= ( DAG2BNLearner< ALLOC > &&  from)

move operator

Definition at line 130 of file DAG2BNLearner_tpl.h.

References gum::Instantiation::end(), GUM_ERROR, gum::MultiDimDecorator< GUM_SCALAR >::set(), gum::Instantiation::setFirst(), gum::Instantiation::setVals(), and gum::MultiDimDecorator< GUM_SCALAR >::variablesSequence().

130  {
131  ApproximationScheme::operator=(std::move(from));
132  return *this;
133  }
+ Here is the call graph for this function:

◆ periodSize()

INLINE Size gum::ApproximationScheme::periodSize ( ) const
virtualinherited

Returns the period size.

Returns
Returns the period size.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 147 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_period_size.

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::makeInference(), and gum::learning::genericBNLearner::periodSize().

147 { return _period_size; }
Size _period_size
Checking criteria frequency.
+ Here is the caller graph for this function:

◆ remainingBurnIn()

INLINE Size gum::ApproximationScheme::remainingBurnIn ( )
inherited

Returns the remaining burn in.

Returns
Returns the remaining burn in.

Definition at line 208 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_burn_in, and gum::ApproximationScheme::_current_step.

208  {
209  if (_burn_in > _current_step) {
210  return _burn_in - _current_step;
211  } else {
212  return 0;
213  }
214  }
Size _burn_in
Number of iterations before checking stopping criteria.
Size _current_step
The current step.

◆ setEpsilon()

INLINE void gum::ApproximationScheme::setEpsilon ( double  eps)
virtualinherited

Given that we approximate f(t), stopping criterion on |f(t+1)-f(t)|.

If the criterion was disabled it will be enabled.

Parameters
epsThe new epsilon value.
Exceptions
OutOfLowerBoundRaised if eps < 0.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 41 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_eps, gum::ApproximationScheme::_eps, and GUM_ERROR.

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::GibbsSampling< GUM_SCALAR >::GibbsSampling(), gum::learning::GreedyHillClimbing::GreedyHillClimbing(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setEpsilon().

41  {
42  if (eps < 0.) { GUM_ERROR(OutOfLowerBound, "eps should be >=0"); }
43 
44  _eps = eps;
45  _enabled_eps = true;
46  }
bool _enabled_eps
If true, the threshold convergence is enabled.
double _eps
Threshold for convergence.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:52
+ Here is the caller graph for this function:

◆ setMaxIter()

INLINE void gum::ApproximationScheme::setMaxIter ( Size  max)
virtualinherited

Stopping criterion on number of iterations.

If the criterion was disabled it will be enabled.

Parameters
maxThe maximum number of iterations.
Exceptions
OutOfLowerBoundRaised if max <= 1.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 93 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_max_iter, gum::ApproximationScheme::_max_iter, and GUM_ERROR.

Referenced by gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setMaxIter().

93  {
94  if (max < 1) { GUM_ERROR(OutOfLowerBound, "max should be >=1"); }
95  _max_iter = max;
96  _enabled_max_iter = true;
97  }
bool _enabled_max_iter
If true, the maximum iterations stopping criterion is enabled.
Size _max_iter
The maximum iterations.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:52
+ Here is the caller graph for this function:

◆ setMaxTime()

INLINE void gum::ApproximationScheme::setMaxTime ( double  timeout)
virtualinherited

Stopping criterion on timeout.

If the criterion was disabled it will be enabled.

Parameters
timeoutThe timeout value in seconds.
Exceptions
OutOfLowerBoundRaised if timeout <= 0.0.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 116 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_max_time, gum::ApproximationScheme::_max_time, and GUM_ERROR.

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::CNMonteCarloSampling(), gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setMaxTime().

116  {
117  if (timeout <= 0.) { GUM_ERROR(OutOfLowerBound, "timeout should be >0."); }
118  _max_time = timeout;
119  _enabled_max_time = true;
120  }
bool _enabled_max_time
If true, the timeout is enabled.
double _max_time
The timeout.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:52
+ Here is the caller graph for this function:

◆ setMinEpsilonRate()

INLINE void gum::ApproximationScheme::setMinEpsilonRate ( double  rate)
virtualinherited

Given that we approximate f(t), stopping criterion on d/dt(|f(t+1)-f(t)|).

If the criterion was disabled it will be enabled

Parameters
rateThe minimal epsilon rate.
Exceptions
OutOfLowerBoundif rate<0

Implements gum::IApproximationSchemeConfiguration.

Definition at line 64 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_enabled_min_rate_eps, gum::ApproximationScheme::_min_rate_eps, and GUM_ERROR.

Referenced by gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::GibbsSampling< GUM_SCALAR >::GibbsSampling(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setMinEpsilonRate().

64  {
65  if (rate < 0) { GUM_ERROR(OutOfLowerBound, "rate should be >=0"); }
66 
67  _min_rate_eps = rate;
68  _enabled_min_rate_eps = true;
69  }
bool _enabled_min_rate_eps
If true, the minimal threshold for epsilon rate is enabled.
double _min_rate_eps
Threshold for the epsilon rate.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:52
+ Here is the caller graph for this function:

◆ setPeriodSize()

INLINE void gum::ApproximationScheme::setPeriodSize ( Size  p)
virtualinherited

How many samples between two stopping is enable.

Parameters
pThe new period value.
Exceptions
OutOfLowerBoundRaised if p < 1.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 141 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_period_size, and GUM_ERROR.

Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::CNMonteCarloSampling(), gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setPeriodSize().

141  {
142  if (p < 1) { GUM_ERROR(OutOfLowerBound, "p should be >=1"); }
143 
144  _period_size = p;
145  }
Size _period_size
Checking criteria frequency.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:52
+ Here is the caller graph for this function:

◆ setVerbosity()

INLINE void gum::ApproximationScheme::setVerbosity ( bool  v)
virtualinherited

Set the verbosity on (true) or off (false).

Parameters
vIf true, then verbosity is turned on.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 150 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_verbosity.

Referenced by gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setVerbosity().

150 { _verbosity = v; }
bool _verbosity
If true, verbosity is enabled.
+ Here is the caller graph for this function:

◆ startOfPeriod()

INLINE bool gum::ApproximationScheme::startOfPeriod ( )
inherited

Returns true if we are at the beginning of a period (compute error is mandatory).

Returns
Returns true if we are at the beginning of a period (compute error is mandatory).

Definition at line 195 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_burn_in, gum::ApproximationScheme::_current_step, and gum::ApproximationScheme::_period_size.

Referenced by gum::ApproximationScheme::continueApproximationScheme().

195  {
196  if (_current_step < _burn_in) { return false; }
197 
198  if (_period_size == 1) { return true; }
199 
200  return ((_current_step - _burn_in) % _period_size == 0);
201  }
Size _burn_in
Number of iterations before checking stopping criteria.
Size _current_step
The current step.
Size _period_size
Checking criteria frequency.
+ Here is the caller graph for this function:

◆ stateApproximationScheme()

INLINE IApproximationSchemeConfiguration::ApproximationSchemeSTATE gum::ApproximationScheme::stateApproximationScheme ( ) const
virtualinherited

Returns the approximation scheme state.

Returns
Returns the approximation scheme state.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 156 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_current_state.

Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::history(), gum::ApproximationScheme::nbrIterations(), and gum::learning::genericBNLearner::stateApproximationScheme().

156  {
157  return _current_state;
158  }
ApproximationSchemeSTATE _current_state
The current state.
+ Here is the caller graph for this function:

◆ stopApproximationScheme()

INLINE void gum::ApproximationScheme::stopApproximationScheme ( )
inherited

Stop the approximation scheme.

Definition at line 217 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_current_state, gum::ApproximationScheme::_stopScheme(), gum::IApproximationSchemeConfiguration::Continue, and gum::IApproximationSchemeConfiguration::Stopped.

Referenced by gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::learning::GreedyHillClimbing::learnStructure(), and gum::learning::LocalSearchWithTabuList::learnStructure().

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ updateApproximationScheme()

INLINE void gum::ApproximationScheme::updateApproximationScheme ( unsigned int  incr = 1)
inherited

Update the scheme w.r.t the new error and increment steps.

Parameters
incrThe new increment steps.

Definition at line 204 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_current_step.

Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), gum::SamplingInference< GUM_SCALAR >::_loopApproxInference(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::learning::GreedyHillClimbing::learnStructure(), gum::learning::LocalSearchWithTabuList::learnStructure(), and gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::makeInference().

204  {
205  _current_step += incr;
206  }
Size _current_step
The current step.
+ Here is the caller graph for this function:

◆ verbosity()

INLINE bool gum::ApproximationScheme::verbosity ( ) const
virtualinherited

Returns true if verbosity is enabled.

Returns
Returns true if verbosity is enabled.

Implements gum::IApproximationSchemeConfiguration.

Definition at line 152 of file approximationScheme_inl.h.

References gum::ApproximationScheme::_verbosity.

Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::history(), and gum::learning::genericBNLearner::verbosity().

152 { return _verbosity; }
bool _verbosity
If true, verbosity is enabled.
+ Here is the caller graph for this function:

Member Data Documentation

◆ _burn_in

◆ _current_epsilon

double gum::ApproximationScheme::_current_epsilon
protectedinherited

◆ _current_rate

double gum::ApproximationScheme::_current_rate
protectedinherited

◆ _current_state

◆ _current_step

◆ _enabled_eps

◆ _enabled_max_iter

bool gum::ApproximationScheme::_enabled_max_iter
protectedinherited

◆ _enabled_max_time

◆ _enabled_min_rate_eps

bool gum::ApproximationScheme::_enabled_min_rate_eps
protectedinherited

◆ _eps

double gum::ApproximationScheme::_eps
protectedinherited

◆ _history

std::vector< double > gum::ApproximationScheme::_history
protectedinherited

◆ _last_epsilon

double gum::ApproximationScheme::_last_epsilon
protectedinherited

Last epsilon value.

Definition at line 370 of file approximationScheme.h.

Referenced by gum::ApproximationScheme::continueApproximationScheme().

◆ _max_iter

Size gum::ApproximationScheme::_max_iter
protectedinherited

◆ _max_time

double gum::ApproximationScheme::_max_time
protectedinherited

◆ _min_rate_eps

double gum::ApproximationScheme::_min_rate_eps
protectedinherited

◆ _period_size

Size gum::ApproximationScheme::_period_size
protectedinherited

◆ _timer

◆ _verbosity

bool gum::ApproximationScheme::_verbosity
protectedinherited

If true, verbosity is enabled.

Definition at line 418 of file approximationScheme.h.

Referenced by gum::ApproximationScheme::setVerbosity(), and gum::ApproximationScheme::verbosity().

◆ onProgress

◆ onStop

Signaler1< std::string > gum::IApproximationSchemeConfiguration::onStop
inherited

Criteria messageApproximationScheme.

Definition at line 60 of file IApproximationSchemeConfiguration.h.

Referenced by gum::ApproximationScheme::_stopScheme(), and gum::learning::genericBNLearner::distributeStop().


The documentation for this class was generated from the following files: