28 #ifndef GUM_FMDP_LEARNER_H 29 #define GUM_FMDP_LEARNER_H 54 template <
TESTNAME VariableAttributeSelection,
83 double similarityThreshold = 0.05);
264 #endif // GUM_FMDP_LEARNER_H MultiDimFunctionGraph< double > * __instantiateFunctionGraph(Int2Type< IMDDILEARNER >)
Initializes the learner.
Learn a graphical representation of a function as a decision tree.
Base class for discrete random variable.
MultiDimFunctionGraph< double > * __instantiateFunctionGraph()
Initializes the learner.
void initialize(FMDP< double > *fmdp)
Initializes the learner.
Headers of the Learning Strategy interface.
Template Implementations of the FMDPLearner class.
HashTable< Idx, VarLearnerTable *> __actionLearners
Headers of the ITI class.
const IVisitableGraphLearner * varLearner(Idx actionId, const DiscreteVariable *var) const
extractCount
<agrum/FMDP/SDyna/IVisitableGraphLearner.h>
LearnerSelect< LearnerSelection, IMDDI< VariableAttributeSelection, false >, ITI< VariableAttributeSelection, false > >::type VariableLearnerType
FMDPLearner(double learningThreshold, bool actionReward, double similarityThreshold=0.05)
Default constructor.
Base class for discrete random variable.
gum is the global namespace for all aGrUM entities
~FMDPLearner()
Default destructor.
bool addObservation(Idx actionId, const Observation *obs)
Gives to the learner a new transition.
The class for generic Hash Tables.
const double __learningThreshold
virtual double modaMax() const
learnerSize
FMDP< double > * __fmdp
The FMDP to store the learned model.
RewardLearnerType * __instantiateRewardLearner(MultiDimFunctionGraph< double > *target, Set< const DiscreteVariable * > &mainVariables)
Initializes the learner.
Representation of a setA Set is a structure that contains arbitrary elements.
Class for implementation of factored markov decision process.
<agrum/FMDP/SDyna/ILearningStrategy.h>
HashTable< const DiscreteVariable *, VariableLearnerType *> VarLearnerTable
HashTable< Idx, RewardLearnerType *> __actionRewardLearners
Headers of the Observation class.
RewardLearnerType * __instantiateRewardLearner(MultiDimFunctionGraph< double > *target, Set< const DiscreteVariable * > &mainVariables, Int2Type< ITILEARNER >)
Initializes the learner.
LearnerSelect< LearnerSelection, IMDDI< RewardAttributeSelection, true >, ITI< RewardAttributeSelection, true > >::type RewardLearnerType
void updateFMDP()
Starts an update of datastructure in the associated FMDP.
virtual double rMax() const
learnerSize
VariableLearnerType * __instantiateVarLearner(MultiDimFunctionGraph< double > *target, Set< const DiscreteVariable * > &mainVariables, const DiscreteVariable *learnedVar, Int2Type< IMDDILEARNER >)
Initializes the learner.
VariableLearnerType * __instantiateVarLearner(MultiDimFunctionGraph< double > *target, Set< const DiscreteVariable * > &mainVariables, const DiscreteVariable *learnedVar)
Initializes the learner.
Size Idx
Type for indexes.
double __modaMax
learnerSize
RewardLearnerType * __instantiateRewardLearner(MultiDimFunctionGraph< double > *target, Set< const DiscreteVariable * > &mainVariables, Int2Type< IMDDILEARNER >)
Initializes the learner.
Implementation of a Terminal Node Policy that maps nodeid directly to value.
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Headers of the IMDDI class.
MultiDimFunctionGraph< double > * __instantiateFunctionGraph(Int2Type< ITILEARNER >)
Initializes the learner.
RewardLearnerType * __rewardLearner
const double __similarityThreshold
VariableLearnerType * __instantiateVarLearner(MultiDimFunctionGraph< double > *target, Set< const DiscreteVariable * > &mainVariables, const DiscreteVariable *learnedVar, Int2Type< ITILEARNER >)
Initializes the learner.
Class hash tables iterators.
static MultiDimFunctionGraph< GUM_SCALAR, TerminalNodePolicy > * getReducedAndOrderedInstance()
Returns a reduced and ordered instance.