26 #include <type_traits> 37 template <
typename GRAPH_CHANGES_
SELECTOR >
42 typename GRAPH_CHANGES_SELECTOR::GeneratorType >::value,
43 "K2 must be called with a K2-compliant Graph Change Generator");
49 auto& generator = selector.graphChangeGenerator();
57 template <
typename GUM_SCALAR,
58 typename GRAPH_CHANGES_SELECTOR,
59 typename PARAM_ESTIMATOR >
61 PARAM_ESTIMATOR& estimator,
66 typename GRAPH_CHANGES_SELECTOR::GeneratorType >::value,
67 "K2 must be called with a K2-compliant Graph Change Generator");
73 auto& generator = selector.graphChangeGenerator();
77 return GreedyHillClimbing::learnBN< GUM_SCALAR >(
78 selector, estimator, initial_dag);
A class that, given a structure and a parameter estimator returns a full Bayes net.
Class representing a Bayesian Network.
the classes to account for structure changes in a graph
The basic class for computing the set of digraph changes allowed by the user to be executed by the le...
gum is the global namespace for all aGrUM entities
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
Sequence< NodeId > __order
the order on the variable used for learning
BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG())
learns the structure and the parameters of a BN