aGrUM  0.14.2
greedyHillClimbing.h
Go to the documentation of this file.
1 /***************************************************************************
2  * Copyright (C) 2005 by Christophe GONZALES and Pierre-Henri WUILLEMIN *
3  * {prenom.nom}@lip6.fr *
4  * *
5  * This program is free software; you can redistribute it and/or modify *
6  * it under the terms of the GNU General Public License as published by *
7  * the Free Software Foundation; either version 2 of the License, or *
8  * (at your option) any later version. *
9  * *
10  * This program is distributed in the hope that it wil be useful, *
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13  * GNU General Public License for more details. *
14  * *
15  * You should have received a copy of the GNU General Public License *
16  * along with this program; if not, write to the *
17  * Free Software Foundation, Inc., *
18  * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19  ***************************************************************************/
31 #ifndef GUM_LEARNING_GREEDY_HILL_CLIMBING_H
32 #define GUM_LEARNING_GREEDY_HILL_CLIMBING_H
33 
34 #include <string>
35 #include <vector>
36 
37 #include <agrum/BN/BayesNet.h>
38 #include <agrum/agrum.h>
40 #include <agrum/graphs/DAG.h>
41 
42 namespace gum {
43 
44  namespace learning {
45 
57  public:
58  // ##########################################################################
60  // ##########################################################################
62 
65 
68 
71 
74 
76 
77  // ##########################################################################
79  // ##########################################################################
81 
84 
87 
89 
90  // ##########################################################################
92  // ##########################################################################
94 
97 
99 
104  template < typename GRAPH_CHANGES_SELECTOR >
105  DAG learnStructure(GRAPH_CHANGES_SELECTOR& selector,
106  DAG initial_dag = DAG());
107 
109 
115  template < typename GUM_SCALAR = double,
116  typename GRAPH_CHANGES_SELECTOR,
117  typename PARAM_ESTIMATOR >
118  BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR& selector,
119  PARAM_ESTIMATOR& estimator,
120  DAG initial_dag = DAG());
121 
123  };
124 
125  } /* namespace learning */
126 
127 } /* namespace gum */
128 
131 
132 #endif /* GUM_LEARNING_GREEDY_HILL_CLIMBING_H */
Class representing a Bayesian Network.
Definition: BayesNet.h:76
This file contains general scheme for iteratively convergent algorithms.
Approximation Scheme.
The greedy hill learning algorithm (for directed graphs)
BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG())
learns the structure and the parameters of a BN
Class representing Bayesian networks.
gum is the global namespace for all aGrUM entities
Definition: agrum.h:25
ApproximationScheme & approximationScheme()
returns the approximation policy of the learning algorithm
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
The greedy hill climbing learning algorithm (for directed graphs)
GreedyHillClimbing()
default constructor
Base class for dag.
Definition: DAG.h:99
Base classes for directed acyclic graphs.
GreedyHillClimbing & operator=(const GreedyHillClimbing &from)
copy operator