64 template <
typename GUM_SCALAR >
67 #define GAP_COMPLEXITY_KL_HEAVY_DIFFICULT double(12.0) 68 #define GAP_COMPLEXITY_KL_DIFFICULT_CORRECT double(7.0) 75 BNdistance(
const IBayesNet< GUM_SCALAR >& P,
const IBayesNet< GUM_SCALAR >& Q);
79 BNdistance(
const BNdistance< GUM_SCALAR >& kl);
82 virtual ~BNdistance();
114 double bhattacharya();
121 const IBayesNet< GUM_SCALAR >& p()
const;
124 const IBayesNet< GUM_SCALAR >& q()
const;
130 virtual void _computeKL();
146 bool __checkCompatibility()
const;
152 #ifndef GUM_NO_EXTERN_TEMPLATE_CLASS Header file of gum::Sequence, a class for storing (ordered) sequences of objects. ...
KL divergence between BNs implementation.
const IBayesNet< GUM_SCALAR > & _p
Class representing Bayesian networks.
Class representing the minimal interface for Bayesian Network.
gum is the global namespace for all aGrUM entities
Complexity
Complexity allows to characterize the awaited difficulty for an algorithm given a specific instance T...
const IBayesNet< GUM_SCALAR > & _q
std::size_t Size
In aGrUM, hashed values are unsigned long int.