aGrUM  0.16.0
gum::ILearningStrategy Class Referenceabstract

<agrum/FMDP/SDyna/ILearningStrategy.h> More...

#include <ILearningStrategy.h>

+ Inheritance diagram for gum::ILearningStrategy:

Public Member Functions

Constructor & destructor.
virtual ~ILearningStrategy ()
 Destructor (virtual and empty since it's an interface) More...
 
Initialization
virtual void initialize (FMDP< double > *fmdp)=0
 Initializes the learner. More...
 
Incremental methods
virtual bool addObservation (Idx actionId, const Observation *obs)=0
 Gives to the learner a new transition. More...
 
virtual void updateFMDP ()=0
 Starts an update of datastructure in the associated FMDP. More...
 
Miscelleanous methods
virtual Size size ()=0
 learnerSize More...
 
virtual const IVisitableGraphLearnervarLearner (Idx actionId, const DiscreteVariable *var) const =0
 Required for RMax. More...
 
virtual double rMax () const =0
 learnerSize More...
 
virtual double modaMax () const =0
 learnerSize More...
 

Detailed Description

<agrum/FMDP/SDyna/ILearningStrategy.h>

Interface for manipulating FMDP learner

Definition at line 55 of file ILearningStrategy.h.

Constructor & Destructor Documentation

◆ ~ILearningStrategy()

virtual gum::ILearningStrategy::~ILearningStrategy ( )
inlinevirtual

Destructor (virtual and empty since it's an interface)

Definition at line 64 of file ILearningStrategy.h.

References addObservation(), initialize(), modaMax(), rMax(), size(), updateFMDP(), and varLearner().

64 {}
+ Here is the call graph for this function:

Member Function Documentation

◆ addObservation()

virtual bool gum::ILearningStrategy::addObservation ( Idx  actionId,
const Observation obs 
)
pure virtual

Gives to the learner a new transition.

Parameters
actionId: the action on which the transition was made
obs: the observed transition
Returns
true if learning this transition implies structural changes (can trigger a new planning)

Implemented in gum::FMDPLearner< VariableAttributeSelection, RewardAttributeSelection, LearnerSelection >.

Referenced by gum::SDYNA::feedback(), and ~ILearningStrategy().

+ Here is the caller graph for this function:

◆ initialize()

virtual void gum::ILearningStrategy::initialize ( FMDP< double > *  fmdp)
pure virtual

Initializes the learner.

Implemented in gum::FMDPLearner< VariableAttributeSelection, RewardAttributeSelection, LearnerSelection >.

Referenced by gum::SDYNA::initialize(), and ~ILearningStrategy().

+ Here is the caller graph for this function:

◆ modaMax()

virtual double gum::ILearningStrategy::modaMax ( ) const
pure virtual

learnerSize

Returns

Implemented in gum::FMDPLearner< VariableAttributeSelection, RewardAttributeSelection, LearnerSelection >.

Referenced by gum::AdaptiveRMaxPlaner::__makeRMaxFunctionGraphs(), and ~ILearningStrategy().

+ Here is the caller graph for this function:

◆ rMax()

virtual double gum::ILearningStrategy::rMax ( ) const
pure virtual

learnerSize

Returns

Implemented in gum::FMDPLearner< VariableAttributeSelection, RewardAttributeSelection, LearnerSelection >.

Referenced by gum::AdaptiveRMaxPlaner::__makeRMaxFunctionGraphs(), and ~ILearningStrategy().

+ Here is the caller graph for this function:

◆ size()

virtual Size gum::ILearningStrategy::size ( )
pure virtual

learnerSize

Returns

Implemented in gum::FMDPLearner< VariableAttributeSelection, RewardAttributeSelection, LearnerSelection >.

Referenced by gum::SDYNA::learnerSize(), and ~ILearningStrategy().

+ Here is the caller graph for this function:

◆ updateFMDP()

virtual void gum::ILearningStrategy::updateFMDP ( )
pure virtual

Starts an update of datastructure in the associated FMDP.

Implemented in gum::FMDPLearner< VariableAttributeSelection, RewardAttributeSelection, LearnerSelection >.

Referenced by gum::SDYNA::makePlanning(), and ~ILearningStrategy().

+ Here is the caller graph for this function:

◆ varLearner()

virtual const IVisitableGraphLearner* gum::ILearningStrategy::varLearner ( Idx  actionId,
const DiscreteVariable var 
) const
pure virtual

Required for RMax.

Returns

Implemented in gum::FMDPLearner< VariableAttributeSelection, RewardAttributeSelection, LearnerSelection >.

Referenced by ~ILearningStrategy().

+ Here is the caller graph for this function:

The documentation for this class was generated from the following file: