29 #ifndef GUM_LEARNING_DAG_2_BN_LEARNER_H 30 #define GUM_LEARNING_DAG_2_BN_LEARNER_H 51 template <
template <
typename >
class ALLOC = std::allocator >
54 ,
private ALLOC< NodeId > {
113 template <
typename GUM_SCALAR =
double >
122 template <
typename GUM_SCALAR =
double >
135 #ifndef DOXYGEN_SHOULD_SKIP_THIS 141 template <
typename GUM_SCALAR =
double >
aGrUM's Potential is a multi-dimensional array with tensor operators.
Class representing a Bayesian Network.
static BayesNet< GUM_SCALAR > createBN(ParamEstimator< ALLOC > &estimator, const DAG &dag)
create a BN from a DAG using a one pass generator (typically ML)
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
virtual ~DAG2BNLearner()
destructor
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
allocator_type getAllocator() const
returns the allocator used by the score
ALLOC< NodeId > allocator_type
type for the allocators passed in arguments of methods
DAG2BNLearner< ALLOC > & operator=(const DAG2BNLearner< ALLOC > &from)
copy operator
ApproximationScheme & approximationScheme()
returns the approximation policy of the learning algorithm
virtual DAG2BNLearner< ALLOC > * clone() const
virtual copy constructor
A class that, given a structure and a parameter estimator returns a full Bayes net.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
The base class for estimating parameters of CPTs.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
DAG2BNLearner(const allocator_type &alloc=allocator_type())
default constructor