35 template <
typename GUM_SCALAR >
38 const GUM_SCALAR& number,
39 const int64_t& den_max,
40 const GUM_SCALAR& zero) {
41 bool isNegative = (number < 0) ?
true :
false;
42 GUM_SCALAR pnumber = (isNegative) ? -number : number;
44 if (std::abs(pnumber - GUM_SCALAR(1.)) < zero) {
45 numerator = (isNegative) ? -1 : 1;
48 }
else if (pnumber < zero) {
54 int64_t a(0), b(1), c(1), d(1);
57 while (b <= den_max && d <= den_max) {
58 mediant = (GUM_SCALAR)(a + c) / (GUM_SCALAR)(b + d);
60 if (std::fabs(pnumber - mediant) < zero) {
61 if (b + d <= den_max) {
62 numerator = (isNegative) ? -(a + c) : (a + c);
66 numerator = (isNegative) ? -c : c;
70 numerator = (isNegative) ? -a : a;
74 }
else if (pnumber > mediant) {
84 numerator = (isNegative) ? -c : c;
88 numerator = (isNegative) ? -a : a;
94 template <
typename GUM_SCALAR >
97 const GUM_SCALAR& number,
99 const GUM_SCALAR pnumber = (number > 0) ? number : -number;
102 GUM_SCALAR rnumber = pnumber;
105 std::vector< uint64_t > p({0, 1});
106 std::vector< uint64_t > q({1, 0});
109 std::vector< uint64_t > a;
111 uint64_t p_tmp, q_tmp;
114 double delta, delta_tmp;
122 a.push_back(std::lrint(std::floor(rnumber)));
123 p.push_back(a.back() * p.back() + p[p.size() - 2]);
124 q.push_back(a.back() * q.back() + q[q.size() - 2]);
126 delta = std::fabs(pnumber - (GUM_SCALAR)p.back() / q.back());
129 numerator = (int64_t)p.back();
130 if (number < 0) numerator = -numerator;
131 denominator = q.back();
135 if (std::abs(rnumber - a.back()) < 1e-6)
break;
137 rnumber = GUM_SCALAR(1.) / (rnumber - a.back());
140 if (a.size() < 2)
return;
145 Idx i =
Idx(p.size() - 2);
151 p_tmp = n * p[i] + p[i - 1];
152 q_tmp = n * q[i] + q[i - 1];
154 delta = std::fabs(pnumber - ((
double)p[i]) / q[i]);
155 delta_tmp = std::fabs(pnumber - ((
double)p_tmp) / q_tmp);
158 numerator = (int64_t)p[i];
159 if (number < 0) numerator = -numerator;
164 if (delta_tmp < zero) {
165 numerator = (int64_t)p_tmp;
166 if (number < 0) numerator = -numerator;
174 for (n = (a[i - 1] + 2) / 2; n < a[i - 1]; ++n) {
175 p_tmp = n * p[i] + p[i - 1];
176 q_tmp = n * q[i] + q[i - 1];
178 delta_tmp = std::fabs(pnumber - ((
double)p_tmp) / q_tmp);
180 if (delta_tmp < zero) {
181 numerator = (int64_t)p_tmp;
182 if (number < 0) numerator = -numerator;
191 template <
typename GUM_SCALAR >
193 int64_t& denominator,
194 const GUM_SCALAR& number,
195 const int64_t& den_max) {
196 const GUM_SCALAR pnumber = (number > 0) ? number : -number;
198 const uint64_t denMax =
202 GUM_SCALAR rnumber = pnumber;
205 std::vector< uint64_t > p({0, 1});
206 std::vector< uint64_t > q({1, 0});
209 std::vector< uint64_t > a;
211 uint64_t p_tmp, q_tmp;
214 double delta, delta_tmp;
218 a.push_back(std::lrint(std::floor(rnumber)));
220 p_tmp = a.back() * p.back() + p[p.size() - 2];
221 q_tmp = a.back() * q.back() + q[q.size() - 2];
223 if (q_tmp > denMax || p_tmp > denMax)
break;
228 if (std::fabs(rnumber - a.back()) < 1e-6)
break;
230 rnumber = GUM_SCALAR(1.) / (rnumber - a.back());
233 if (a.size() < 2 || q.back() == denMax || p.back() == denMax) {
234 numerator = p.back();
235 if (number < 0) numerator = -numerator;
236 denominator = q.back();
243 Idx i =
Idx(p.size() - 1);
248 for (n = a[i - 1] - 1; n >= (a[i - 1] + 2) / 2; --n) {
249 p_tmp = n * p[i] + p[i - 1];
250 q_tmp = n * q[i] + q[i - 1];
252 if (q_tmp > denMax || p_tmp > denMax)
continue;
254 numerator = (int64_t)p_tmp;
255 if (number < 0) numerator = -numerator;
262 p_tmp = n * p[i] + p[i - 1];
263 q_tmp = n * q[i] + q[i - 1];
265 delta_tmp = std::fabs(pnumber - ((
double)p_tmp) / q_tmp);
266 delta = std::fabs(pnumber - ((
double)p[i]) / q[i]);
268 if (delta_tmp < delta && q_tmp <= denMax && p_tmp <= denMax) {
269 numerator = (int64_t)p_tmp;
270 if (number < 0) numerator = -numerator;
273 numerator = (int64_t)p[i];
274 if (number < 0) numerator = -numerator;
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
static void continuedFracBest(int64_t &numerator, int64_t &denominator, const GUM_SCALAR &number, const int64_t &den_max=1000000)
Find the best rational approximation.
static void farey(int64_t &numerator, int64_t &denominator, const GUM_SCALAR &number, const int64_t &den_max=1000000L, const GUM_SCALAR &zero=1e-6)
Find the rational close enough to a given ( decimal ) number in [-1,1] and whose denominator is not h...
static void continuedFracFirst(int64_t &numerator, int64_t &denominator, const GUM_SCALAR &number, const double &zero=1e-6)
Find the first best rational approximation.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Size Idx
Type for indexes.