34 #ifndef GUM_GIBBS_KL2_H 35 #define GUM_GIBBS_KL2_H 78 template <
typename GUM_SCALAR >
133 #ifndef GUM_NO_EXTERN_TEMPLATE_CLASS Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Class representing the minimal interface for Bayesian Network.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
~GibbsBNdistance()
destructor
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
GibbsKL computes the KL divergence betweens 2 BNs using an approximation pattern: GIBBS sampling...
Size burnIn() const
Returns the number of burn in.
void setBurnIn(Size b)
Number of burn in for one iteration.
std::size_t Size
In aGrUM, hashed values are unsigned long int.
class containing all variables and methods required for Gibbssampling
GibbsBNdistance(const IBayesNet< GUM_SCALAR > &P, const IBayesNet< GUM_SCALAR > &Q)
constructor must give 2 BNs