aGrUM  0.16.0
greedyHillClimbing.h
Go to the documentation of this file.
1 
34 #ifndef GUM_LEARNING_GREEDY_HILL_CLIMBING_H
35 #define GUM_LEARNING_GREEDY_HILL_CLIMBING_H
36 
37 #include <string>
38 #include <vector>
39 
40 #include <agrum/BN/BayesNet.h>
41 #include <agrum/agrum.h>
43 #include <agrum/graphs/DAG.h>
44 
45 namespace gum {
46 
47  namespace learning {
48 
60  public:
61  // ##########################################################################
63  // ##########################################################################
65 
68 
71 
74 
77 
79 
80  // ##########################################################################
82  // ##########################################################################
84 
87 
90 
92 
93  // ##########################################################################
95  // ##########################################################################
97 
100 
102 
107  template < typename GRAPH_CHANGES_SELECTOR >
108  DAG learnStructure(GRAPH_CHANGES_SELECTOR& selector,
109  DAG initial_dag = DAG());
110 
112 
118  template < typename GUM_SCALAR = double,
119  typename GRAPH_CHANGES_SELECTOR,
120  typename PARAM_ESTIMATOR >
121  BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR& selector,
122  PARAM_ESTIMATOR& estimator,
123  DAG initial_dag = DAG());
124 
126  };
127 
128  } /* namespace learning */
129 
130 } /* namespace gum */
131 
134 
135 #endif /* GUM_LEARNING_GREEDY_HILL_CLIMBING_H */
Class representing a Bayesian Network.
Definition: BayesNet.h:78
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Approximation Scheme.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG())
learns the structure and the parameters of a BN
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Definition: agrum.h:25
ApproximationScheme & approximationScheme()
returns the approximation policy of the learning algorithm
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
The greedy hill climbing learning algorithm (for directed graphs)
GreedyHillClimbing()
default constructor
Base class for dag.
Definition: DAG.h:102
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
GreedyHillClimbing & operator=(const GreedyHillClimbing &from)
copy operator