34 #ifndef GUM_LEARNING_GREEDY_HILL_CLIMBING_H 35 #define GUM_LEARNING_GREEDY_HILL_CLIMBING_H 107 template <
typename GRAPH_CHANGES_
SELECTOR >
118 template <
typename GUM_SCALAR =
double,
119 typename GRAPH_CHANGES_SELECTOR,
120 typename PARAM_ESTIMATOR >
122 PARAM_ESTIMATOR& estimator,
Class representing a Bayesian Network.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG())
learns the structure and the parameters of a BN
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
ApproximationScheme & approximationScheme()
returns the approximation policy of the learning algorithm
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
The greedy hill climbing learning algorithm (for directed graphs)
~GreedyHillClimbing()
destructor
GreedyHillClimbing()
default constructor
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
GreedyHillClimbing & operator=(const GreedyHillClimbing &from)
copy operator