aGrUM  0.17.2
a C++ library for (probabilistic) graphical models
gum::BayesNet< GUM_SCALAR > Class Template Reference

Class representing a Bayesian Network. More...

#include <agrum/BN/BayesNet.h>

+ Inheritance diagram for gum::BayesNet< GUM_SCALAR >:
+ Collaboration diagram for gum::BayesNet< GUM_SCALAR >:

Public Member Functions

NodeId addNoisyAND (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a noisyAND implementation. More...
 
NodeId addNoisyAND (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, its associate node and a noisyAND implementation. More...
 
NodeId addLogit (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a Logit implementation. More...
 
NodeId addLogit (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, its associate node and a Logit implementation. More...
 
NodeId addOR (const DiscreteVariable &var)
 Add a variable, it's associate node and an OR implementation. More...
 
NodeId addAND (const DiscreteVariable &var)
 Add a variable, it's associate node and an AND implementation. More...
 
void addWeightedArc (NodeId tail, NodeId head, GUM_SCALAR causalWeight)
 Add an arc in the BN, and update arc.head's CPT. More...
 
void addWeightedArc (const std::string &tail, const std::string &head, GUM_SCALAR causalWeight)
 Add an arc in the BN, and update arc.head's CPT. More...
 
void generateCPTs () const
 randomly generates CPTs for a given structure More...
 
void generateCPT (NodeId node) const
 randomly generate CPT for a given node in a given structure More...
 
void generateCPT (const std::string &name) const
 
void changePotential (NodeId id, Potential< GUM_SCALAR > *newPot)
 change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId. More...
 
void changePotential (const std::string &name, Potential< GUM_SCALAR > *newPot)
 
bool operator== (const IBayesNet< GUM_SCALAR > &from) const
 This operator compares 2 BNs ! More...
 
bool operator!= (const IBayesNet< GUM_SCALAR > &from) const
 
Size dim () const
 Returns the dimension (the number of free parameters) in this bayes net. More...
 
Size maxVarDomainSize () const
 
GUM_SCALAR minParam () const
 
GUM_SCALAR maxParam () const
 
GUM_SCALAR minNonZeroParam () const
 
GUM_SCALAR maxNonOneParam () const
 
virtual std::string toDot () const
 
std::string toString () const
 
NodeSet minimalCondSet (NodeId target, const NodeSet &soids) const
 
NodeSet minimalCondSet (const NodeSet &targets, const NodeSet &soids) const
 
bool hasSameStructure (const DAGmodel &other)
 
double log10DomainSize () const
 
Constructors and Destructor
 BayesNet ()
 Default constructor. More...
 
 BayesNet (std::string name)
 Default constructor. More...
 
virtual ~BayesNet () final
 Destructor. More...
 
 BayesNet (const BayesNet< GUM_SCALAR > &source)
 Copy constructor. More...
 
Operators
BayesNet< GUM_SCALAR > & operator= (const BayesNet< GUM_SCALAR > &source)
 Copy operator. More...
 
Variable manipulation methods
const Potential< GUM_SCALAR > & cpt (NodeId varId) const final
 Returns the CPT of a variable. More...
 
const Potential< GUM_SCALAR > & cpt (const std::string &name) const
 Returns the CPT of a variable. More...
 
const VariableNodeMapvariableNodeMap () const final
 Returns a map between variables and nodes of this gum::BayesNet. More...
 
NodeId add (const DiscreteVariable &var)
 Add a variable to the gum::BayesNet. More...
 
NodeId add (const std::string &name, unsigned int nbrmod)
 Shortcut for add(gum::LabelizedVariable(name,name,nbrmod)) More...
 
NodeId add (const DiscreteVariable &var, MultiDimImplementation< GUM_SCALAR > *aContent)
 Add a variable to the gum::BayesNet. More...
 
NodeId add (const DiscreteVariable &var, NodeId id)
 Add a variable to the gum::BayesNet. More...
 
NodeId add (const DiscreteVariable &var, MultiDimImplementation< GUM_SCALAR > *aContent, NodeId id)
 Add a variable to the gum::BayesNet. More...
 
void clear ()
 clear the whole Bayes net * More...
 
void erase (NodeId varId)
 Remove a variable from the gum::BayesNet. More...
 
void erase (const std::string &name)
 Removes a variable from the gum::BayesNet. More...
 
void erase (const DiscreteVariable &var)
 Remove a variable from the gum::BayesNet. More...
 
const DiscreteVariablevariable (NodeId id) const final
 Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet. More...
 
const DiscreteVariablevariable (const std::string &name) const
 Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet. More...
 
void changeVariableName (NodeId id, const std::string &new_name)
 Changes a variable's name in the gum::BayesNet. More...
 
void changeVariableName (const std::string &name, const std::string &new_name)
 Changes a variable's name. More...
 
void changeVariableLabel (NodeId id, const std::string &old_label, const std::string &new_label)
 Changes a variable's label in the gum::BayesNet. More...
 
void changeVariableLabel (const std::string &name, const std::string &old_label, const std::string &new_label)
 Changes a variable's name. More...
 
NodeId nodeId (const DiscreteVariable &var) const final
 Returns a variable's id in the gum::BayesNet. More...
 
NodeId idFromName (const std::string &name) const final
 Returns a variable's id given its name in the gum::BayesNet. More...
 
const DiscreteVariablevariableFromName (const std::string &name) const final
 Returns a variable given its name in the gum::BayesNet. More...
 
Arc manipulation methods.
void addArc (NodeId tail, NodeId head)
 Add an arc in the BN, and update arc.head's CPT. More...
 
void addArc (const std::string &tail, const std::string &head)
 Add an arc in the BN, and update arc.head's CPT. More...
 
void eraseArc (const Arc &arc)
 Removes an arc in the BN, and update head's CTP. More...
 
void eraseArc (NodeId tail, NodeId head)
 Removes an arc in the BN, and update head's CTP. More...
 
void eraseArc (const std::string &tail, const std::string &head)
 Removes an arc in the BN, and update head's CTP. More...
 
void beginTopologyTransformation ()
 When inserting/removing arcs, node CPTs change their dimension with a cost in time. More...
 
void endTopologyTransformation ()
 terminates a sequence of insertions/deletions of arcs by adjusting all CPTs dimensions. More...
 
void reverseArc (NodeId tail, NodeId head)
 Reverses an arc while preserving the same joint distribution. More...
 
void reverseArc (const std::string &tail, const std::string &head)
 Reverses an arc while preserving the same joint distribution. More...
 
void reverseArc (const Arc &arc)
 Reverses an arc while preserving the same joint distribution. More...
 
Accessors for nodes with CI or logical implementation
NodeId addNoisyOR (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, it's associate node and a gum::noisyOR implementation. More...
 
NodeId addNoisyORNet (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, it's associate node and a gum::noisyOR implementation. More...
 
NodeId addNoisyORCompound (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, it's associate node and a gum::noisyOR implementation. More...
 
NodeId addNoisyOR (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a noisyOR implementation. More...
 
NodeId addNoisyORNet (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a noisyOR implementation. More...
 
NodeId addNoisyORCompound (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a noisyOR implementation. More...
 
NodeId addAMPLITUDE (const DiscreteVariable &var)
 Others aggregators. More...
 
NodeId addCOUNT (const DiscreteVariable &var, Idx value=1)
 Others aggregators. More...
 
NodeId addEXISTS (const DiscreteVariable &var, Idx value=1)
 Others aggregators. More...
 
NodeId addFORALL (const DiscreteVariable &var, Idx value=1)
 Others aggregators. More...
 
NodeId addMAX (const DiscreteVariable &var)
 Others aggregators. More...
 
NodeId addMEDIAN (const DiscreteVariable &var)
 Others aggregators. More...
 
NodeId addMIN (const DiscreteVariable &var)
 Others aggregators. More...
 
Joint Probability manipulation methods
GUM_SCALAR jointProbability (const Instantiation &i) const
 Compute a parameter of the joint probability for the BN (given an instantiation of the vars) More...
 
GUM_SCALAR log2JointProbability (const Instantiation &i) const
 Compute a parameter of the log joint probability for the BN (given an instantiation of the vars) More...
 
Variable manipulation methods.
const DAGdag () const
 Returns a constant reference to the dag of this Bayes Net. More...
 
virtual Size size () const final
 Returns the number of variables in this Directed Graphical Model. More...
 
Size sizeArcs () const
 Returns the number of arcs in this Directed Graphical Model. More...
 
const NodeGraphPartnodes () const
 Returns a constant reference to the dag of this Bayes Net. More...
 
Arc manipulation methods.
const ArcSetarcs () const
 returns the set of nodes with arc ingoing to a given node More...
 
const NodeSetparents (const NodeId id) const
 returns the set of nodes with arc ingoing to a given node More...
 
const NodeSetparents (const std::string &name) const
 returns the set of nodes with arc ingoing to a given node More...
 
const NodeSetchildren (const NodeId id) const
 returns the set of nodes with arc outgoing from a given node More...
 
const NodeSetchildren (const std::string &name) const
 returns the set of nodes with arc ingoing to a given node More...
 
Graphical methods
const UndiGraphmoralGraph (bool clear=true) const
 The node's id are coherent with the variables and nodes of the topology. More...
 
const Sequence< NodeId > & topologicalOrder (bool clear=true) const
 The topological order stays the same as long as no variable or arcs are added or erased src the topology. More...
 
Getter and setters
const std::string & property (const std::string &name) const
 Return the value of the property name of this GraphicalModel. More...
 
const std::string & propertyWithDefault (const std::string &name, const std::string &byDefault) const
 Return the value of the property name of this GraphicalModel. More...
 
void setProperty (const std::string &name, const std::string &value)
 Add or change a property of this GraphicalModel. More...
 
Variable manipulation methods.
virtual bool empty () const
 Retursn true if this Directed Graphical Model is empty. More...
 
Instantiation completeInstantiation () const
 Get an instantiation over all the variables of the model. More...
 

Static Public Member Functions

static BayesNet< GUM_SCALAR > fastPrototype (const std::string &dotlike, Size domainSize=2)
 Create a Bayesian network with a dot-like syntax which specifies: More...
 

Protected Attributes

DAG _dag
 The DAG of this Directed Graphical Model. More...
 

Friends

class BayesNetFactory< GUM_SCALAR >
 

Detailed Description

template<typename GUM_SCALAR>
class gum::BayesNet< GUM_SCALAR >

Class representing a Bayesian Network.

Bayesian Networks are a probabilistic graphical model in which nodes are random variables and the probability distribution is defined by the product:

\(P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | \pi(X_i))\),

where \(\pi(X_i)\) is the parent of \(X_i\).

The probability distribution can be represented as a directed acyclic graph (DAG) where:

  • Nodes are discrete random variables.
  • An arc A -> B represent a dependency between variables A and B, i.e. B conditional probability distribution is defined as \(P(B| \pi(B)\).

After a variable is added to the BN, it's domain cannot change. But it arcs are added, the data in its CPT are lost.

You should look a the gum::BayesNetFactory class which can help build Bayesian Networks.

You can print a BayesNet using gum::operator<<(std::ostream&, const BayesNet<GUM_SCALAR>&).

Definition at line 78 of file BayesNet.h.

Constructor & Destructor Documentation

◆ BayesNet() [1/3]

template<typename GUM_SCALAR >
INLINE gum::BayesNet< GUM_SCALAR >::BayesNet ( )

Default constructor.

Definition at line 171 of file BayesNet_tpl.h.

171  : IBayesNet< GUM_SCALAR >() {
172  GUM_CONSTRUCTOR(BayesNet);
173  }
BayesNet()
Default constructor.
Definition: BayesNet_tpl.h:171

◆ BayesNet() [2/3]

template<typename GUM_SCALAR >
INLINE gum::BayesNet< GUM_SCALAR >::BayesNet ( std::string  name)
explicit

Default constructor.

Parameters
nameThe BayesNet's name.

Definition at line 176 of file BayesNet_tpl.h.

176  :
177  IBayesNet< GUM_SCALAR >(name) {
178  GUM_CONSTRUCTOR(BayesNet);
179  }
BayesNet()
Default constructor.
Definition: BayesNet_tpl.h:171

◆ ~BayesNet()

template<typename GUM_SCALAR >
gum::BayesNet< GUM_SCALAR >::~BayesNet ( )
finalvirtual

Destructor.

Definition at line 204 of file BayesNet_tpl.h.

204  {
205  GUM_DESTRUCTOR(BayesNet);
206  for (const auto p: __probaMap) {
207  delete p.second;
208  }
209  }
BayesNet()
Default constructor.
Definition: BayesNet_tpl.h:171
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670

◆ BayesNet() [3/3]

template<typename GUM_SCALAR>
gum::BayesNet< GUM_SCALAR >::BayesNet ( const BayesNet< GUM_SCALAR > &  source)

Copy constructor.

Definition at line 182 of file BayesNet_tpl.h.

182  :
183  IBayesNet< GUM_SCALAR >(source), __varMap(source.__varMap) {
184  GUM_CONS_CPY(BayesNet);
185 
186  __copyPotentials(source);
187  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
BayesNet()
Default constructor.
Definition: BayesNet_tpl.h:171
void __copyPotentials(const BayesNet< GUM_SCALAR > &source)
copy of potentials from a BN to another, using names of vars as ref.
Definition: BayesNet_tpl.h:659

Member Function Documentation

◆ __clearPotentials()

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::__clearPotentials ( )
private

clear all potentials

Definition at line 648 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::generateCPT().

648  {
649  // Removing previous potentials
650  for (const auto& elt: __probaMap) {
651  delete elt.second;
652  }
653 
654  __probaMap.clear();
655  }
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
+ Here is the caller graph for this function:

◆ __copyPotentials()

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::__copyPotentials ( const BayesNet< GUM_SCALAR > &  source)
private

copy of potentials from a BN to another, using names of vars as ref.

Definition at line 659 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::generateCPT().

660  {
661  // Copying potentials
662 
663  for (const auto src: source.__probaMap) {
664  // First we build the node's CPT
665  Potential< GUM_SCALAR >* copy_array = new Potential< GUM_SCALAR >();
666  copy_array->beginMultipleChanges();
667  for (gum::Idx i = 0; i < src.second->nbrDim(); i++) {
668  (*copy_array) << variableFromName(src.second->variable(i).name());
669  }
670  copy_array->endMultipleChanges();
671  copy_array->copyFrom(*(src.second));
672 
673  // We add the CPT to the CPT's hashmap
674  __probaMap.insert(src.first, copy_array);
675  }
676  }
const DiscreteVariable & variableFromName(const std::string &name) const final
Returns a variable given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:320
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
Size Idx
Type for indexes.
Definition: types.h:53
+ Here is the caller graph for this function:

◆ _unsafeChangePotential()

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::_unsafeChangePotential ( NodeId  id,
Potential< GUM_SCALAR > *  newPot 
)
private

change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId.

Warning
no verification of dimensions are performer
See also
changePotential

Definition at line 713 of file BayesNet_tpl.h.

714  {
715  delete __probaMap[id];
716  __probaMap[id] = newPot;
717  }
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670

◆ add() [1/5]

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::add ( const DiscreteVariable var)

Add a variable to the gum::BayesNet.

Add a gum::DiscreteVariable, it's associated gum::NodeId and it's gum::Potential.

The variable is added by copy to the gum::BayesNet. The variable's gum::Potential implementation will be a gum::MultiDimArray.

Parameters
varThe variable added by copy.
Returns
Returns the variable's id in the gum::BayesNet.
Exceptions
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.

Definition at line 243 of file BayesNet_tpl.h.

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__bnCopy(), gum::learning::genericBNLearner::Database::__BNVars(), gum::credal::CredalNet< GUM_SCALAR >::approximatedBinarization(), gum::build_node(), gum::BayesNet< double >::cpt(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), and gum::BayesNetFragment< GUM_SCALAR >::toBN().

243  {
244  auto ptr = new MultiDimArray< GUM_SCALAR >();
245  NodeId res = 0;
246 
247  try {
248  res = add(var, ptr);
249 
250  } catch (Exception&) {
251  delete ptr;
252  throw;
253  }
254 
255  return res;
256  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
Size NodeId
Type for node ids.
Definition: graphElements.h:98
+ Here is the caller graph for this function:

◆ add() [2/5]

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::add ( const std::string &  name,
unsigned int  nbrmod 
)

Shortcut for add(gum::LabelizedVariable(name,name,nbrmod))

Add a gum::LabelizedVariable to the gum::BayesNet

This method is just a shortcut for a often used pattern

Exceptions
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.
NotAllowedif nbrmod<2

Definition at line 259 of file BayesNet_tpl.h.

260  {
261  if (nbrmod < 2) {
262  GUM_ERROR(OperationNotAllowed,
263  "Variable " << name << "needs more than " << nbrmod
264  << " modalities");
265  }
266 
267  RangeVariable v(name, name, 0, nbrmod - 1);
268  return add(v);
269  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ add() [3/5]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::add ( const DiscreteVariable var,
MultiDimImplementation< GUM_SCALAR > *  aContent 
)

Add a variable to the gum::BayesNet.

Add a gum::DiscreteVariable, it's associated gum::NodeId and it's gum::Potential.

The variable is added by copy to the gum::BayesNet.

Parameters
varThe variable added by copy.
aContentThe gum::MultiDimImplementation to use for this variable's gum::Potential implementation.
Returns
Returns the variable's id in the gum::BayesNet.
Exceptions
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.

Definition at line 272 of file BayesNet_tpl.h.

273  {
274  NodeId proposedId = dag().nextNodeId();
275  NodeId res = 0;
276 
277  res = add(var, aContent, proposedId);
278 
279  return res;
280  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
NodeId nextNodeId() const
returns a new node id, not yet used by any node
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:36
Size NodeId
Type for node ids.
Definition: graphElements.h:98

◆ add() [4/5]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::add ( const DiscreteVariable var,
NodeId  id 
)

Add a variable to the gum::BayesNet.

Add a gum::DiscreteVariable, it's associated gum::NodeId and it's gum::Potential.

The variable is added by copy to the gum::BayesNet. The variable's gum::Potential implementation will be a gum::MultiDimArray.

Parameters
varThe variable added by copy.
idThe variable's forced gum::NodeId in the gum::BayesNet.
Returns
Returns the variable's id in the gum::BayesNet.
Exceptions
DuplicateElementRaised id is already used.
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.

Definition at line 283 of file BayesNet_tpl.h.

284  {
285  auto ptr = new MultiDimArray< GUM_SCALAR >();
286  NodeId res = 0;
287 
288  try {
289  res = add(var, ptr, id);
290 
291  } catch (Exception&) {
292  delete ptr;
293  throw;
294  }
295 
296  return res;
297  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
Size NodeId
Type for node ids.
Definition: graphElements.h:98

◆ add() [5/5]

template<typename GUM_SCALAR>
NodeId gum::BayesNet< GUM_SCALAR >::add ( const DiscreteVariable var,
MultiDimImplementation< GUM_SCALAR > *  aContent,
NodeId  id 
)

Add a variable to the gum::BayesNet.

Add a gum::DiscreteVariable, it's associated gum::NodeId and it's gum::Potential.

Parameters
varThe variable added by copy.
aContentThe gum::MultiDimImplementation to use for this variable's gum::Potential implementation.
idThe variable's forced gum::NodeId in the gum::BayesNet.
Returns
Returns the variable's id in the gum::BayesNet.
Exceptions
DuplicateElementRaised id is already used.
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.

Definition at line 301 of file BayesNet_tpl.h.

303  {
304  __varMap.insert(id, var);
305  this->_dag.addNodeWithId(id);
306 
307  auto cpt = new Potential< GUM_SCALAR >(aContent);
308  (*cpt) << variable(id);
309  __probaMap.insert(id, cpt);
310  return id;
311  }
virtual void addNodeWithId(const NodeId id)
try to insert a node with the given id
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
NodeId insert(NodeId id, const DiscreteVariable &var)
Maps id with var.
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:326

◆ addAMPLITUDE()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addAMPLITUDE ( const DiscreteVariable var)

Others aggregators.

Definition at line 482 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

482  {
483  return add(var, new aggregator::Amplitude< GUM_SCALAR >());
484  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addAND()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addAND ( const DiscreteVariable var)

Add a variable, it's associate node and an AND implementation.

The id of the new variable is automatically generated.

Warning
AND is implemented as a gum::aggregator::And which means that if parents are not boolean, all value>1 is True
Parameters
varThe variable added by copy.
Returns
the id of the added variable.
Exceptions
SizeErrorif variable.domainSize()>2

Definition at line 487 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

487  {
488  if (var.domainSize() > 2) GUM_ERROR(SizeError, "an AND has to be boolean");
489 
490  return add(var, new aggregator::And< GUM_SCALAR >());
491  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ addArc() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::addArc ( NodeId  tail,
NodeId  head 
)

Add an arc in the BN, and update arc.head's CPT.

Parameters
headand
tailas NodeId
Exceptions
InvalidEdgeIf arc.tail and/or arc.head are not in the BN.
DuplicateElementif the arc already exists

Definition at line 369 of file BayesNet_tpl.h.

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__bnCopy(), gum::credal::CredalNet< GUM_SCALAR >::approximatedBinarization(), gum::BayesNet< double >::changeVariableLabel(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::BayesNet< double >::fastPrototype(), and gum::BayesNetFragment< GUM_SCALAR >::toBN().

369  {
370  if (this->_dag.existsArc(tail, head)) {
371  GUM_ERROR(DuplicateElement,
372  "The arc (" << tail << "," << head << ") already exists.")
373  }
374 
375  this->_dag.addArc(tail, head);
376  // Add parent in the child's CPT
377  (*(__probaMap[head])) << variable(tail);
378  }
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
virtual void addArc(const NodeId tail, const NodeId head)
insert a new arc into the directed graph
Definition: DAG_inl.h:43
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
bool existsArc(const Arc &arc) const
indicates whether a given arc exists
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ addArc() [2/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::addArc ( const std::string &  tail,
const std::string &  head 
)

Add an arc in the BN, and update arc.head's CPT.

Exceptions
gum::DuplicateElementif the arc already exists

Definition at line 381 of file BayesNet_tpl.h.

382  {
383  try {
384  addArc(this->idFromName(tail), this->idFromName(head));
385  } catch (DuplicateElement) {
386  GUM_ERROR(DuplicateElement,
387  "The arc " << tail << "->" << head << " already exists.")
388  }
389  }
void addArc(NodeId tail, NodeId head)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:369
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ addCOUNT()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addCOUNT ( const DiscreteVariable var,
Idx  value = 1 
)

Others aggregators.

Definition at line 494 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

495  {
496  return add(var, new aggregator::Count< GUM_SCALAR >(value));
497  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addEXISTS()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addEXISTS ( const DiscreteVariable var,
Idx  value = 1 
)

Others aggregators.

Definition at line 500 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

501  {
502  if (var.domainSize() > 2) GUM_ERROR(SizeError, "an EXISTS has to be boolean");
503 
504  return add(var, new aggregator::Exists< GUM_SCALAR >(value));
505  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ addFORALL()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addFORALL ( const DiscreteVariable var,
Idx  value = 1 
)

Others aggregators.

Definition at line 508 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

509  {
510  if (var.domainSize() > 2) GUM_ERROR(SizeError, "an EXISTS has to be boolean");
511 
512  return add(var, new aggregator::Forall< GUM_SCALAR >(value));
513  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ addLogit() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addLogit ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a Logit implementation.

Parameters
varThe variable added by copy
external_weightsee gum::MultiDimLogit
idproposed gum::nodeId for the variable
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.

Definition at line 586 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

588  {
589  return add(var, new MultiDimLogit< GUM_SCALAR >(external_weight), id);
590  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addLogit() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addLogit ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, its associate node and a Logit implementation.

The id of the new variable is automatically generated.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimLogit
Returns
the id of the added variable.

Definition at line 566 of file BayesNet_tpl.h.

567  {
568  return add(var, new MultiDimLogit< GUM_SCALAR >(external_weight));
569  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243

◆ addMAX()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addMAX ( const DiscreteVariable var)

Others aggregators.

Definition at line 516 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

516  {
517  return add(var, new aggregator::Max< GUM_SCALAR >());
518  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addMEDIAN()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addMEDIAN ( const DiscreteVariable var)

Others aggregators.

Definition at line 521 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

521  {
522  return add(var, new aggregator::Median< GUM_SCALAR >());
523  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addMIN()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addMIN ( const DiscreteVariable var)

Others aggregators.

Definition at line 526 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

526  {
527  return add(var, new aggregator::Min< GUM_SCALAR >());
528  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addNoisyAND() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyAND ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a noisyAND implementation.

Parameters
varThe variable added by copy
external_weightsee gum::MultiDimNoisyAND
idproposed gum::nodeId for the variable
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.

Definition at line 579 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

581  {
582  return add(var, new MultiDimNoisyAND< GUM_SCALAR >(external_weight), id);
583  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addNoisyAND() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyAND ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, its associate node and a noisyAND implementation.

The id of the new variable is automatically generated.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimNoisyAND
Returns
the id of the added variable.

Definition at line 560 of file BayesNet_tpl.h.

561  {
562  return add(var, new MultiDimNoisyAND< GUM_SCALAR >(external_weight));
563  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243

◆ addNoisyOR() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyOR ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, it's associate node and a gum::noisyOR implementation.

The id of the new variable is automatically generated. Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the gum::BayesNet::addNoisyOR as an alias for gum::BayesNet::addNoisyORCompound

Parameters
varThe variable added by copy.
external_weightsee ref gum::MultiDimNoisyORNet,gum::MultiDimNoisyORCompound
Returns
the id of the added variable.

Definition at line 542 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

543  {
544  return addNoisyORCompound(var, external_weight);
545  }
NodeId addNoisyORCompound(const DiscreteVariable &var, GUM_SCALAR external_weight)
Add a variable, it&#39;s associate node and a gum::noisyOR implementation.
Definition: BayesNet_tpl.h:548
+ Here is the caller graph for this function:

◆ addNoisyOR() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyOR ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a noisyOR implementation.

Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the addNoisyOR as an alias for addNoisyORCompound.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimNoisyORNet, gum::MultiDimNoisyORCompound
idThe chosen id
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.
Exceptions
DuplicateElementif id is already used

Definition at line 572 of file BayesNet_tpl.h.

574  {
575  return addNoisyORCompound(var, external_weight, id);
576  }
NodeId addNoisyORCompound(const DiscreteVariable &var, GUM_SCALAR external_weight)
Add a variable, it&#39;s associate node and a gum::noisyOR implementation.
Definition: BayesNet_tpl.h:548

◆ addNoisyORCompound() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyORCompound ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, it's associate node and a gum::noisyOR implementation.

The id of the new variable is automatically generated. Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the gum::BayesNet::addNoisyOR as an alias for gum::BayesNet::addNoisyORCompound

Parameters
varThe variable added by copy.
external_weightsee ref gum::MultiDimNoisyORNet,gum::MultiDimNoisyORCompound
Returns
the id of the added variable.

Definition at line 548 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

549  {
550  return add(var, new MultiDimNoisyORCompound< GUM_SCALAR >(external_weight));
551  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addNoisyORCompound() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyORCompound ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a noisyOR implementation.

Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the addNoisyOR as an alias for addNoisyORCompound.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimNoisyORNet, gum::MultiDimNoisyORCompound
idThe chosen id
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.
Exceptions
DuplicateElementif id is already used

Definition at line 593 of file BayesNet_tpl.h.

594  {
595  return add(
596  var, new MultiDimNoisyORCompound< GUM_SCALAR >(external_weight), id);
597  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243

◆ addNoisyORNet() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyORNet ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, it's associate node and a gum::noisyOR implementation.

The id of the new variable is automatically generated. Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the gum::BayesNet::addNoisyOR as an alias for gum::BayesNet::addNoisyORCompound

Parameters
varThe variable added by copy.
external_weightsee ref gum::MultiDimNoisyORNet,gum::MultiDimNoisyORCompound
Returns
the id of the added variable.

Definition at line 554 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

555  {
556  return add(var, new MultiDimNoisyORNet< GUM_SCALAR >(external_weight));
557  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
+ Here is the caller graph for this function:

◆ addNoisyORNet() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyORNet ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a noisyOR implementation.

Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the addNoisyOR as an alias for addNoisyORCompound.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimNoisyORNet, gum::MultiDimNoisyORCompound
idThe chosen id
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.
Exceptions
DuplicateElementif id is already used

Definition at line 600 of file BayesNet_tpl.h.

602  {
603  return add(var, new MultiDimNoisyORNet< GUM_SCALAR >(external_weight), id);
604  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243

◆ addOR()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addOR ( const DiscreteVariable var)

Add a variable, it's associate node and an OR implementation.

The id of the new variable is automatically generated.

Warning
OR is implemented as a gum::aggregator::Or which means that if parents are not boolean, all value>1 is True
Parameters
varThe variable added by copy.
Returns
the id of the added variable.
Exceptions
SizeErrorif variable.domainSize()>2

Definition at line 531 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::reverseArc().

531  {
532  if (var.domainSize() > 2) GUM_ERROR(SizeError, "an OR has to be boolean");
533 
534  return add(var, new aggregator::Or< GUM_SCALAR >());
535  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:243
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ addWeightedArc() [1/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::addWeightedArc ( NodeId  tail,
NodeId  head,
GUM_SCALAR  causalWeight 
)

Add an arc in the BN, and update arc.head's CPT.

Parameters
headand
tailas NodeId
causalWeightsee gum::MultiDimICIModel
Exceptions
InvalidArcIf arc.tail and/or arc.head are not in the BN.
InvalidArcIf variable in arc.head is not a NoisyOR variable.

Definition at line 607 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::addWeightedArc(), and gum::BayesNet< double >::reverseArc().

609  {
610  auto* CImodel =
611  dynamic_cast< const MultiDimICIModel< GUM_SCALAR >* >(cpt(head).content());
612 
613  if (CImodel != 0) {
614  // or is OK
615  addArc(tail, head);
616 
617  CImodel->causalWeight(variable(tail), causalWeight);
618  } else {
619  GUM_ERROR(InvalidArc,
620  "Head variable (" << variable(head).name()
621  << ") is not a CIModel variable !");
622  }
623  }
void addArc(NodeId tail, NodeId head)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:369
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:326
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ addWeightedArc() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::addWeightedArc ( const std::string &  tail,
const std::string &  head,
GUM_SCALAR  causalWeight 
)
inline

Add an arc in the BN, and update arc.head's CPT.

Parameters
headand
tailas std::string
causalWeightsee gum::MultiDimICIModel
NotFoundif no node with sun names is found
Exceptions
InvalidArcIf arc.tail and/or arc.head are not in the BN.
InvalidArcIf variable in arc.head is not a NoisyOR variable.

Definition at line 636 of file BayesNet.h.

638  {
639  addWeightedArc(idFromName(tail), idFromName(head), causalWeight);
640  };
void addWeightedArc(NodeId tail, NodeId head, GUM_SCALAR causalWeight)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:607
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314

◆ arcs()

INLINE const ArcSet & gum::DAGmodel::arcs ( ) const
inherited

returns the set of nodes with arc ingoing to a given node

Note that the set of nodes returned may be empty if no arc within the ArcGraphPart is ingoing into the given node.

Parameters
idthe node toward which the nodes returned share an arc

Definition at line 44 of file DAGmodel_inl.h.

References gum::DAGmodel::_dag, and gum::ArcGraphPart::arcs().

Referenced by gum::EssentialGraph::__buildEssentialGraph(), gum::DAGmodel::__moralGraph(), gum::MarkovBlanket::hasSameStructure(), gum::DAGmodel::hasSameStructure(), and gum::BayesNetFragment< GUM_SCALAR >::toBN().

44 { return _dag.arcs(); }
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
const ArcSet & arcs() const
returns the set of arcs stored within the ArcGraphPart
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ beginTopologyTransformation()

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::beginTopologyTransformation ( )

When inserting/removing arcs, node CPTs change their dimension with a cost in time.

begin Multiple Change for all CPTs

These functions delay the CPTs change to be done just once at the end of a sequence of topology modification. begins a sequence of insertions/deletions of arcs without changing the dimensions of the CPTs.

Definition at line 634 of file BayesNet_tpl.h.

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__bnCopy(), gum::credal::CredalNet< GUM_SCALAR >::approximatedBinarization(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), and gum::BayesNet< double >::eraseArc().

634  {
635  for (const auto node: nodes())
636  __probaMap[node]->beginMultipleChanges();
637  }
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
+ Here is the caller graph for this function:

◆ changePotential() [1/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::changePotential ( NodeId  id,
Potential< GUM_SCALAR > *  newPot 
)

change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId.

Exceptions
NotAllowedif newPot has not the same signature as __probaMap[NodeId]

Definition at line 692 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::generateCPT().

693  {
694  if (cpt(id).nbrDim() != newPot->nbrDim()) {
695  GUM_ERROR(OperationNotAllowed,
696  "cannot exchange potentials with different "
697  "dimensions for variable with id "
698  << id);
699  }
700 
701  for (Idx i = 0; i < cpt(id).nbrDim(); i++) {
702  if (&cpt(id).variable(i) != &(newPot->variable(i))) {
703  GUM_ERROR(OperationNotAllowed,
704  "cannot exchange potentials because, for variable with id "
705  << id << ", dimension " << i << " differs. ");
706  }
707  }
708 
709  _unsafeChangePotential(id, newPot);
710  }
void _unsafeChangePotential(NodeId id, Potential< GUM_SCALAR > *newPot)
change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId.
Definition: BayesNet_tpl.h:713
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:326
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ changePotential() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::changePotential ( const std::string &  name,
Potential< GUM_SCALAR > *  newPot 
)

Definition at line 720 of file BayesNet_tpl.h.

721  {
722  changePotential(idFromName(name), newPot);
723  }
void changePotential(NodeId id, Potential< GUM_SCALAR > *newPot)
change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId.
Definition: BayesNet_tpl.h:692
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314

◆ changeVariableLabel() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::changeVariableLabel ( NodeId  id,
const std::string &  old_label,
const std::string &  new_label 
)

Changes a variable's label in the gum::BayesNet.

This will change the gum::LabelizedVariable names in the gum::BayesNet.

Exceptions
DuplicateLabelRaised if new_label is already used in this gum::LabelizedVariable.
NotFoundRaised if no variable matches id or if the variable is not a LabelizedVariable

Definition at line 225 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::changeVariableLabel(), and gum::BayesNet< double >::changeVariableName().

226  {
227  if (variable(id).varType() != VarType::Labelized) {
228  GUM_ERROR(NotFound, "Variable " << id << " is not a LabelizedVariable.");
229  }
230  LabelizedVariable* var = dynamic_cast< LabelizedVariable* >(
231  const_cast< DiscreteVariable* >(&variable(id)));
232 
233  var->changeLabel(var->posLabel(old_label), new_label);
234  }
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ changeVariableLabel() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::changeVariableLabel ( const std::string &  name,
const std::string &  old_label,
const std::string &  new_label 
)
inline

Changes a variable's name.

Definition at line 352 of file BayesNet.h.

354  {
355  changeVariableLabel(idFromName(name), old_label, new_label);
356  }
void changeVariableLabel(NodeId id, const std::string &old_label, const std::string &new_label)
Changes a variable&#39;s label in the gum::BayesNet.
Definition: BayesNet_tpl.h:225
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314

◆ changeVariableName() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::changeVariableName ( NodeId  id,
const std::string &  new_name 
)

Changes a variable's name in the gum::BayesNet.

This will change the gum::DiscreteVariable names in the gum::BayesNet.

Exceptions
DuplicateLabelRaised if newName is already used in this gum::BayesNet.
NotFoundRaised if no variable matches id.

Definition at line 219 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::changeVariableName(), and gum::BayesNet< double >::variable().

220  {
221  __varMap.changeName(id, new_name);
222  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
void changeName(NodeId id, const std::string &new_name)
we allow the user to change the name of a variable
+ Here is the caller graph for this function:

◆ changeVariableName() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::changeVariableName ( const std::string &  name,
const std::string &  new_name 
)
inline

Changes a variable's name.

Definition at line 331 of file BayesNet.h.

331  {
332  changeVariableName(idFromName(name), new_name);
333  }
void changeVariableName(NodeId id, const std::string &new_name)
Changes a variable&#39;s name in the gum::BayesNet.
Definition: BayesNet_tpl.h:219
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314

◆ children() [1/2]

INLINE const NodeSet & gum::DAGmodel::children ( const NodeId  id) const
inherited

returns the set of nodes with arc outgoing from a given node

Note that the set of arcs returned may be empty if no arc within the ArcGraphPart is outgoing from the given node.

Parameters
idthe node which is the tail of the arcs returned

Definition at line 53 of file DAGmodel_inl.h.

References gum::DAGmodel::_dag, and gum::ArcGraphPart::children().

Referenced by gum::MarkovBlanket::__buildMarkovBlanket(), gum::MarkovBlanket::MarkovBlanket(), gum::prm::InstanceBayesNet< GUM_SCALAR >::toDot(), and gum::prm::ClassBayesNet< GUM_SCALAR >::toDot().

53  {
54  return _dag.children(id);
55  }
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ children() [2/2]

INLINE const NodeSet & gum::DAGmodel::children ( const std::string &  name) const
inherited

returns the set of nodes with arc ingoing to a given node

Note that the set of nodes returned may be empty if no arc within the ArcGraphPart is ingoing into the given node.

Parameters
idthe node toward which the nodes returned share an arc

Definition at line 56 of file DAGmodel_inl.h.

References gum::DAGmodel::_dag, gum::ArcGraphPart::children(), and gum::DAGmodel::idFromName().

56  {
57  return _dag.children(idFromName(name));
58  }
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
+ Here is the call graph for this function:

◆ clear()

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::clear ( )

clear the whole Bayes net *

Definition at line 359 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::__clearPotentials(), and gum::BayesNet< double >::cpt().

359  {
360  if (!this->empty()) {
361  auto l = this->nodes();
362  for (const auto no: l) {
363  this->erase(no);
364  }
365  }
366  }
virtual bool empty() const
Retursn true if this Directed Graphical Model is empty.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
void erase(NodeId varId)
Remove a variable from the gum::BayesNet.
Definition: BayesNet_tpl.h:341
+ Here is the caller graph for this function:

◆ completeInstantiation()

INLINE Instantiation gum::GraphicalModel::completeInstantiation ( ) const
inherited

Get an instantiation over all the variables of the model.

Definition at line 85 of file graphicalModel_inl.h.

References gum::GraphicalModel::nodes(), and gum::GraphicalModel::variable().

85  {
86  Instantiation I;
87 
88  for (const auto node: nodes())
89  I << variable(node);
90 
91  return I;
92  }
virtual const NodeGraphPart & nodes() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
+ Here is the call graph for this function:

◆ cpt() [1/2]

template<typename GUM_SCALAR >
INLINE const Potential< GUM_SCALAR > & gum::BayesNet< GUM_SCALAR >::cpt ( NodeId  varId) const
finalvirtual

Returns the CPT of a variable.

Parameters
varIdA variable's id in the gum::BayesNet.
Returns
The variable's CPT.
Exceptions
NotFoundIf no variable's id matches varId.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 326 of file BayesNet_tpl.h.

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__bnCopy(), gum::credal::CredalNet< GUM_SCALAR >::approximatedBinarization(), gum::BayesNet< double >::cpt(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::SimpleCPTDisturber< GUM_SCALAR >::disturbAugmCPT(), gum::SimpleCPTDisturber< GUM_SCALAR >::disturbReducCPT(), gum::BayesNetFragment< GUM_SCALAR >::toBN(), and gum::credal::CredalNet< GUM_SCALAR >::toString().

326  {
327  return *(__probaMap[varId]);
328  }
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
+ Here is the caller graph for this function:

◆ cpt() [2/2]

template<typename GUM_SCALAR>
const Potential< GUM_SCALAR >& gum::BayesNet< GUM_SCALAR >::cpt ( const std::string &  name) const
inline

Returns the CPT of a variable.

Definition at line 166 of file BayesNet.h.

166  {
167  return cpt(idFromName(name));
168  };
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:326
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314

◆ dag()

◆ dim()

template<typename GUM_SCALAR >
Size gum::IBayesNet< GUM_SCALAR >::dim ( ) const
inherited

Returns the dimension (the number of free parameters) in this bayes net.

\( dim(G)=\sum_{i \in nodes} ((r_i-1)\cdot q_i) \) where \( r_i \) is the number of instantiations of node \( i \) and \( q_i \) is the number of instantiations of its parents.

Definition at line 79 of file IBayesNet_tpl.h.

79  {
80  Size dim = 0;
81 
82  for (auto node: nodes()) {
83  Size q = 1;
84 
85  for (auto parent: parents(node))
86  q *= variable(parent).domainSize();
87 
88  dim += (variable(node).domainSize() - 1) * q;
89  }
90 
91  return dim;
92  }
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:46
virtual Size domainSize() const =0
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
Size dim() const
Returns the dimension (the number of free parameters) in this bayes net.
Definition: IBayesNet_tpl.h:79
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:48

◆ empty()

INLINE bool gum::GraphicalModel::empty ( ) const
virtualinherited

Retursn true if this Directed Graphical Model is empty.

Definition at line 95 of file graphicalModel_inl.h.

References gum::GraphicalModel::size().

95 { return size() == 0; }
virtual Size size() const =0
Returns the number of variables in this Directed Graphical Model.
+ Here is the call graph for this function:

◆ endTopologyTransformation()

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::endTopologyTransformation ( )

terminates a sequence of insertions/deletions of arcs by adjusting all CPTs dimensions.

end Multiple Change for all CPTs

Definition at line 641 of file BayesNet_tpl.h.

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__bnCopy(), gum::credal::CredalNet< GUM_SCALAR >::approximatedBinarization(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), and gum::BayesNet< double >::eraseArc().

641  {
642  for (const auto node: nodes())
643  __probaMap[node]->endMultipleChanges();
644  }
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
+ Here is the caller graph for this function:

◆ erase() [1/3]

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::erase ( NodeId  varId)

Remove a variable from the gum::BayesNet.

Removes the corresponding variable from the gum::BayesNet and from all of it's children gum::Potential.

If no variable matches the given id, then nothing is done.

Parameters
varIdThe variable's id to remove.

Definition at line 341 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::cpt(), and gum::BayesNet< double >::erase().

341  {
342  if (__varMap.exists(varId)) {
343  // Reduce the variable child's CPT
344  const NodeSet& children = this->children(varId);
345 
346  for (const auto c: children) {
347  __probaMap[c]->erase(variable(varId));
348  }
349 
350  delete __probaMap[varId];
351 
352  __probaMap.erase(varId);
353  __varMap.erase(varId);
354  this->_dag.eraseNode(varId);
355  }
356  }
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
Definition: DAGmodel_inl.h:53
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
bool exists(NodeId id) const
Return true if id matches a node.
void erase(NodeId id)
Removes a var and it&#39;s id of this mapping. The pointer is deleted.
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
virtual void eraseNode(const NodeId id)
remove a node and its adjacent arcs from the graph
Definition: diGraph_inl.h:69
+ Here is the caller graph for this function:

◆ erase() [2/3]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::erase ( const std::string &  name)
inline

Removes a variable from the gum::BayesNet.

Definition at line 283 of file BayesNet.h.

Referenced by gum::BayesNet< double >::erase().

283 { erase(idFromName(name)); };
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314
void erase(NodeId varId)
Remove a variable from the gum::BayesNet.
Definition: BayesNet_tpl.h:341
+ Here is the caller graph for this function:

◆ erase() [3/3]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::erase ( const DiscreteVariable var)

Remove a variable from the gum::BayesNet.

Removes the corresponding variable from the gum::BayesNet and from all of it's children gum::Potential.

If no variable matches the given variable, then nothing is done.

Parameters
varA reference on the variable to remove.

Definition at line 336 of file BayesNet_tpl.h.

336  {
337  erase(__varMap.get(var));
338  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
void erase(NodeId varId)
Remove a variable from the gum::BayesNet.
Definition: BayesNet_tpl.h:341
const DiscreteVariable & get(NodeId id) const
Returns a discrete variable given it&#39;s node id.

◆ eraseArc() [1/3]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::eraseArc ( const Arc arc)

Removes an arc in the BN, and update head's CTP.

If (tail, head) doesn't exist, the nothing happens.

Parameters
arcThe arc removed.

Definition at line 392 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::changeVariableLabel(), and gum::BayesNet< double >::eraseArc().

392  {
393  if (__varMap.exists(arc.tail()) && __varMap.exists(arc.head())) {
394  NodeId head = arc.head(), tail = arc.tail();
395  this->_dag.eraseArc(arc);
396  // Remove parent froms child's CPT
397  (*(__probaMap[head])) >> variable(tail);
398  }
399  }
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
virtual void eraseArc(const Arc &arc)
removes an arc from the ArcGraphPart
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
bool exists(NodeId id) const
Return true if id matches a node.
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
NodeProperty< Potential< GUM_SCALAR > *> __probaMap
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
Size NodeId
Type for node ids.
Definition: graphElements.h:98
+ Here is the caller graph for this function:

◆ eraseArc() [2/3]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::eraseArc ( NodeId  tail,
NodeId  head 
)

Removes an arc in the BN, and update head's CTP.

If (tail, head) doesn't exist, the nothing happens.

Parameters
headand
tailas NodeId

Definition at line 402 of file BayesNet_tpl.h.

402  {
403  eraseArc(Arc(tail, head));
404  }
void eraseArc(const Arc &arc)
Removes an arc in the BN, and update head&#39;s CTP.
Definition: BayesNet_tpl.h:392

◆ eraseArc() [3/3]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::eraseArc ( const std::string &  tail,
const std::string &  head 
)
inline

Removes an arc in the BN, and update head's CTP.

Definition at line 432 of file BayesNet.h.

432  {
433  eraseArc(idFromName(tail), idFromName(head));
434  }
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314
void eraseArc(const Arc &arc)
Removes an arc in the BN, and update head&#39;s CTP.
Definition: BayesNet_tpl.h:392

◆ fastPrototype()

template<typename GUM_SCALAR >
BayesNet< GUM_SCALAR > gum::BayesNet< GUM_SCALAR >::fastPrototype ( const std::string &  dotlike,
Size  domainSize = 2 
)
static

Create a Bayesian network with a dot-like syntax which specifies:

  • the structure "a->b->c;b->d<-e;".
  • the type of the variables with different syntax:

Note that if the dot-like string contains such a specification more than once for a variable, the first specification will be used.

Parameters
dotlikethe string containing the specification
domainSizethe default domain size for variables
Returns
the resulting bayesian network

Definition at line 138 of file BayesNet_tpl.h.

139  {
141 
142 
143  for (const auto& chaine: split(dotlike, ";")) {
144  NodeId lastId = 0;
145  bool notfirst = false;
146  for (const auto& souschaine: split(chaine, "->")) {
147  bool forward = true;
148  for (const auto& node: split(souschaine, "<-")) {
149  auto idVar = build_node(bn, node, domainSize);
150  if (notfirst) {
151  if (forward) {
152  bn.addArc(lastId, idVar);
153  forward = false;
154  } else {
155  bn.addArc(idVar, lastId);
156  }
157  } else {
158  notfirst = true;
159  forward = false;
160  }
161  lastId = idVar;
162  }
163  }
164  }
165  bn.generateCPTs();
166  bn.setProperty("name", "fastPrototype");
167  return bn;
168  }
void addArc(NodeId tail, NodeId head)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:369
Class representing a Bayesian Network.
Definition: BayesNet.h:78
NodeId build_node(gum::BayesNet< GUM_SCALAR > &bn, std::string node, gum::Size default_domain_size)
Definition: BayesNet_tpl.h:60
void setProperty(const std::string &name, const std::string &value)
Add or change a property of this GraphicalModel.
std::vector< std::string > split(const std::string &str, const std::string &delim)
Split str using the delimiter.
void generateCPTs() const
randomly generates CPTs for a given structure
Definition: BayesNet_tpl.h:679
Size NodeId
Type for node ids.
Definition: graphElements.h:98

◆ generateCPT() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::generateCPT ( NodeId  node) const

randomly generate CPT for a given node in a given structure

Definition at line 685 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::addWeightedArc(), and gum::BayesNet< double >::generateCPT().

685  {
686  SimpleCPTGenerator< GUM_SCALAR > generator;
687 
688  generator.generateCPT(cpt(node).pos(variable(node)), cpt(node));
689  }
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:326
+ Here is the caller graph for this function:

◆ generateCPT() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::generateCPT ( const std::string &  name) const
inline

Definition at line 648 of file BayesNet.h.

648  {
649  generateCPT(idFromName(name));
650  };
void generateCPT(NodeId node) const
randomly generate CPT for a given node in a given structure
Definition: BayesNet_tpl.h:685
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314

◆ generateCPTs()

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::generateCPTs ( ) const

randomly generates CPTs for a given structure

Definition at line 679 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::addWeightedArc(), and gum::BayesNet< double >::fastPrototype().

679  {
680  for (const auto node: nodes())
681  generateCPT(node);
682  }
void generateCPT(NodeId node) const
randomly generate CPT for a given node in a given structure
Definition: BayesNet_tpl.h:685
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
+ Here is the caller graph for this function:

◆ hasSameStructure()

bool gum::DAGmodel::hasSameStructure ( const DAGmodel other)
inherited
Returns
true if all the named node are the same and all the named arcs are the same

Definition at line 103 of file DAGmodel.cpp.

References gum::DAGmodel::arcs(), gum::Set< Key, Alloc >::exists(), gum::DAGmodel::idFromName(), gum::DAGmodel::nodes(), gum::DAGmodel::size(), gum::DAGmodel::sizeArcs(), and gum::DAGmodel::variable().

103  {
104  if (this == &other) return true;
105 
106  if (size() != other.size()) return false;
107 
108  if (sizeArcs() != other.sizeArcs()) return false;
109 
110  for (const auto& nid: nodes()) {
111  try {
112  other.idFromName(variable(nid).name());
113  } catch (NotFound) { return false; }
114  }
115 
116  for (const auto& arc: arcs()) {
117  if (!other.arcs().exists(Arc(other.idFromName(variable(arc.tail()).name()),
118  other.idFromName(variable(arc.head()).name()))))
119  return false;
120  }
121 
122  return true;
123  }
const ArcSet & arcs() const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:44
Size sizeArcs() const
Returns the number of arcs in this Directed Graphical Model.
Definition: DAGmodel_inl.h:42
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:39
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
+ Here is the call graph for this function:

◆ idFromName()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::idFromName ( const std::string &  name) const
finalvirtual

Returns a variable's id given its name in the gum::BayesNet.

Parameters
nameThe variable's name from which the gum::NodeId is returned.
Returns
Returns the variable gum::NodeId in the gum::BayesNet.
Exceptions
NotFoundRaised if name does not match a variable in the gum::BayesNet.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 314 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::addWeightedArc(), gum::build_node(), gum::BayesNet< double >::changeVariableLabel(), gum::BayesNet< double >::changeVariableName(), gum::BayesNet< double >::cpt(), gum::BayesNet< double >::erase(), gum::BayesNet< double >::eraseArc(), gum::BayesNet< double >::generateCPT(), gum::BayesNet< double >::idFromName(), gum::BayesNet< double >::reverseArc(), and gum::BayesNet< double >::variable().

314  {
315  return __varMap.idFromName(name);
316  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
NodeId idFromName(const std::string &name) const
+ Here is the caller graph for this function:

◆ jointProbability()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::jointProbability ( const Instantiation i) const
inherited

Compute a parameter of the joint probability for the BN (given an instantiation of the vars)

Warning
a variable not present in the instantiation is assumed to be instantiated to 0.

Definition at line 211 of file IBayesNet_tpl.h.

211  {
212  auto value = (GUM_SCALAR)1.0;
213 
214  GUM_SCALAR tmp;
215 
216  for (auto node: nodes()) {
217  if ((tmp = cpt(node)[i]) == (GUM_SCALAR)0) { return (GUM_SCALAR)0; }
218 
219  value *= tmp;
220  }
221 
222  return value;
223  }
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60

◆ log10DomainSize()

INLINE double gum::GraphicalModel::log10DomainSize ( ) const
inherited

Definition at line 74 of file graphicalModel_inl.h.

References gum::GraphicalModel::nodes(), and gum::GraphicalModel::variable().

Referenced by gum::InfluenceDiagram< GUM_SCALAR >::toString(), and gum::IMarkovNet< GUM_SCALAR >::toString().

74  {
75  double dSize = 0.0;
76 
77  for (const auto node: nodes()) {
78  dSize += std::log10(variable(node).domainSize());
79  }
80 
81  return dSize;
82  }
virtual const NodeGraphPart & nodes() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ log2JointProbability()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::log2JointProbability ( const Instantiation i) const
inherited

Compute a parameter of the log joint probability for the BN (given an instantiation of the vars)

Compute a parameter of the joint probability for the BN (given an instantiation of the vars)

Warning
a variable not present in the instantiation is assumed to be instantiated to 0.

Definition at line 230 of file IBayesNet_tpl.h.

230  {
231  auto value = (GUM_SCALAR)0.0;
232 
233  GUM_SCALAR tmp;
234 
235  for (auto node: nodes()) {
236  if ((tmp = cpt(node)[i]) == (GUM_SCALAR)0) {
237  return (GUM_SCALAR)(-std::numeric_limits< double >::infinity());
238  }
239 
240  value += log2(cpt(node)[i]);
241  }
242 
243  return value;
244  }
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60

◆ maxNonOneParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::maxNonOneParam ( ) const
inherited
Returns
the biggest value (not equal to 1) in the CPTs of *this

Definition at line 135 of file IBayesNet_tpl.h.

135  {
136  GUM_SCALAR res = 0.0;
137  for (auto node: nodes()) {
138  auto v = cpt(node).maxNonOne();
139  if (v > res) { res = v; }
140  }
141  return res;
142  }
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60

◆ maxParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::maxParam ( ) const
inherited
Returns
the biggest value in the CPTs of *this

Definition at line 115 of file IBayesNet_tpl.h.

115  {
116  GUM_SCALAR res = 1.0;
117  for (auto node: nodes()) {
118  auto v = cpt(node).max();
119  if (v > res) { res = v; }
120  }
121  return res;
122  }
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60

◆ maxVarDomainSize()

template<typename GUM_SCALAR >
Size gum::IBayesNet< GUM_SCALAR >::maxVarDomainSize ( ) const
inherited
Returns
the biggest domainSize among the variables of *this

Definition at line 95 of file IBayesNet_tpl.h.

Referenced by gum::ImportanceSampling< GUM_SCALAR >::_onContextualize().

95  {
96  Size res = 0;
97  for (auto node: nodes()) {
98  auto v = variable(node).domainSize();
99  if (v > res) { res = v; }
100  }
101  return res;
102  }
virtual Size domainSize() const =0
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:48
+ Here is the caller graph for this function:

◆ minimalCondSet() [1/2]

template<typename GUM_SCALAR >
NodeSet gum::IBayesNet< GUM_SCALAR >::minimalCondSet ( NodeId  target,
const NodeSet soids 
) const
inherited

Definition at line 346 of file IBayesNet_tpl.h.

347  {
348  if (soids.contains(target)) return NodeSet({target});
349 
350  NodeSet res;
351  NodeSet alreadyVisitedUp;
352  NodeSet alreadyVisitedDn;
353  alreadyVisitedDn << target;
354  alreadyVisitedUp << target;
355 
356  for (auto fath: _dag.parents(target))
358  fath, soids, res, alreadyVisitedUp, alreadyVisitedDn);
359  for (auto chil: _dag.children(target))
361  chil, soids, res, alreadyVisitedUp, alreadyVisitedDn);
362  return res;
363  }
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
void __minimalCondSetVisitUp(NodeId node, const NodeSet &soids, NodeSet &minimal, NodeSet &alreadyVisitedUp, NodeSet &alreadyVisitedDn) const
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
void __minimalCondSetVisitDn(NodeId node, const NodeSet &soids, NodeSet &minimal, NodeSet &alreadyVisitedUp, NodeSet &alreadyVisitedDn) const

◆ minimalCondSet() [2/2]

template<typename GUM_SCALAR >
NodeSet gum::IBayesNet< GUM_SCALAR >::minimalCondSet ( const NodeSet targets,
const NodeSet soids 
) const
inherited

Definition at line 366 of file IBayesNet_tpl.h.

367  {
368  NodeSet res;
369  for (auto node: targets) {
370  res += minimalCondSet(node, soids);
371  }
372  return res;
373  }
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
NodeSet minimalCondSet(NodeId target, const NodeSet &soids) const

◆ minNonZeroParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::minNonZeroParam ( ) const
inherited
Returns
the smallest value (not equal to 0) in the CPTs of *this

Definition at line 125 of file IBayesNet_tpl.h.

Referenced by gum::ImportanceSampling< GUM_SCALAR >::_onContextualize().

125  {
126  GUM_SCALAR res = 1.0;
127  for (auto node: nodes()) {
128  auto v = cpt(node).minNonZero();
129  if (v < res) { res = v; }
130  }
131  return res;
132  }
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
+ Here is the caller graph for this function:

◆ minParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::minParam ( ) const
inherited
Returns
the smallest value in the CPTs of *this

Definition at line 105 of file IBayesNet_tpl.h.

105  {
106  GUM_SCALAR res = 1.0;
107  for (auto node: nodes()) {
108  auto v = cpt(node).min();
109  if (v < res) { res = v; }
110  }
111  return res;
112  }
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60

◆ moralGraph()

const UndiGraph & gum::DAGmodel::moralGraph ( bool  clear = true) const
inherited

The node's id are coherent with the variables and nodes of the topology.

Parameters
clearIf false returns the previously created moral graph.

Definition at line 83 of file DAGmodel.cpp.

References gum::DAGmodel::__moralGraph(), gum::DAGmodel::__mutableMoralGraph, and gum::UndiGraph::clear().

Referenced by gum::prm::SVED< GUM_SCALAR >::__eliminateNodes(), gum::prm::SVE< GUM_SCALAR >::__eliminateNodes(), gum::prm::SVED< GUM_SCALAR >::__eliminateNodesWithEvidence(), gum::prm::SVE< GUM_SCALAR >::__eliminateNodesWithEvidence(), gum::prm::SVED< GUM_SCALAR >::__initLiftedNodes(), and gum::prm::SVE< GUM_SCALAR >::__initLiftedNodes().

83  {
84  if (clear
85  || (__mutableMoralGraph == nullptr)) { // we have to call _moralGraph
86  if (__mutableMoralGraph == nullptr) {
87  __mutableMoralGraph = new UndiGraph();
88  } else {
89  // clear is True ,__mutableMoralGraph exists
91  }
92 
93  __moralGraph();
94  }
95 
96  return *__mutableMoralGraph;
97  }
virtual void clear()
removes all the nodes and edges from the graph
Definition: undiGraph_inl.h:43
UndiGraph * __mutableMoralGraph
The moral graph of this Directed Graphical Model.
Definition: DAGmodel.h:170
void __moralGraph() const
Returns the moral graph of this DAGModel.
Definition: DAGmodel.cpp:44
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ nodeId()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::nodeId ( const DiscreteVariable var) const
finalvirtual

Returns a variable's id in the gum::BayesNet.

Parameters
varThe variable from which the gum::NodeId is returned.
Returns
Returns the gum::DiscreteVariable gum::NodeId in the gum::BayesNet.
Exceptions
NotFoundIf var is not in the gum::BayesNet.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 238 of file BayesNet_tpl.h.

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__bnCopy(), and gum::BayesNet< double >::changeVariableLabel().

238  {
239  return __varMap.get(var);
240  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
const DiscreteVariable & get(NodeId id) const
Returns a discrete variable given it&#39;s node id.
+ Here is the caller graph for this function:

◆ nodes()

INLINE const NodeGraphPart & gum::DAGmodel::nodes ( ) const
virtualinherited

Returns a constant reference to the dag of this Bayes Net.

Implements gum::GraphicalModel.

Definition at line 60 of file DAGmodel_inl.h.

References gum::DAGmodel::_dag.

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__bnCopy(), gum::EssentialGraph::__buildEssentialGraph(), gum::MarkovBlanket::__buildMarkovBlanket(), gum::DAGmodel::__moralGraph(), gum::credal::CredalNet< GUM_SCALAR >::__sort_varType(), gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__verticesSampling(), gum::ImportanceSampling< GUM_SCALAR >::_unsharpenBN(), gum::BayesNetFactory< GUM_SCALAR >::BayesNetFactory(), gum::BayesNetFragment< GUM_SCALAR >::checkConsistency(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::MCBayesNetGenerator< GUM_SCALAR, ICPTGenerator, ICPTDisturber >::disturbBN(), gum::Estimator< GUM_SCALAR >::Estimator(), gum::getMaxModality(), gum::DAGmodel::hasSameStructure(), gum::prm::InstanceBayesNet< GUM_SCALAR >::modalities(), gum::prm::ClassBayesNet< GUM_SCALAR >::modalities(), gum::Estimator< GUM_SCALAR >::setFromBN(), gum::BayesNetFragment< GUM_SCALAR >::toBN(), gum::prm::InstanceBayesNet< GUM_SCALAR >::toDot(), gum::prm::ClassBayesNet< GUM_SCALAR >::toDot(), gum::credal::CredalNet< GUM_SCALAR >::toString(), and gum::BayesNetFragment< GUM_SCALAR >::~BayesNetFragment().

60  {
61  return (NodeGraphPart&)_dag;
62  }
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
+ Here is the caller graph for this function:

◆ operator!=()

template<typename GUM_SCALAR>
bool gum::IBayesNet< GUM_SCALAR >::operator!= ( const IBayesNet< GUM_SCALAR > &  from) const
inherited
Returns
Returns false if the src and this are equal.

Definition at line 294 of file IBayesNet_tpl.h.

294  {
295  return !this->operator==(from);
296  }
bool operator==(const IBayesNet< GUM_SCALAR > &from) const
This operator compares 2 BNs !

◆ operator=()

template<typename GUM_SCALAR>
BayesNet< GUM_SCALAR > & gum::BayesNet< GUM_SCALAR >::operator= ( const BayesNet< GUM_SCALAR > &  source)

Copy operator.

Parameters
sourceThe copied BayesNet.
Returns
The copy of source.

Definition at line 191 of file BayesNet_tpl.h.

191  {
192  if (this != &source) {
194  __varMap = source.__varMap;
195 
197  __copyPotentials(source);
198  }
199 
200  return *this;
201  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
IBayesNet< GUM_SCALAR > & operator=(const IBayesNet< GUM_SCALAR > &source)
Copy operator.
Definition: IBayesNet_tpl.h:67
void __copyPotentials(const BayesNet< GUM_SCALAR > &source)
copy of potentials from a BN to another, using names of vars as ref.
Definition: BayesNet_tpl.h:659
void __clearPotentials()
clear all potentials
Definition: BayesNet_tpl.h:648

◆ operator==()

template<typename GUM_SCALAR>
bool gum::IBayesNet< GUM_SCALAR >::operator== ( const IBayesNet< GUM_SCALAR > &  from) const
inherited

This operator compares 2 BNs !

Warning
To identify nodes between BNs, it is assumed that they share the same name.
Returns
true if the src and this are equal.

Definition at line 247 of file IBayesNet_tpl.h.

247  {
248  if (size() != from.size()) { return false; }
249 
250  if (sizeArcs() != from.sizeArcs()) { return false; }
251 
252  // alignment of variables between the 2 BNs
253  Bijection< const DiscreteVariable*, const DiscreteVariable* > alignment;
254 
255  for (auto node: nodes()) {
256  try {
257  alignment.insert(&variable(node),
258  &from.variableFromName(variable(node).name()));
259  } catch (NotFound&) {
260  // a name is not found in from
261  return false;
262  }
263  }
264 
265  for (auto node: nodes()) {
266  NodeId fromnode = from.idFromName(variable(node).name());
267 
268  if (cpt(node).nbrDim() != from.cpt(fromnode).nbrDim()) { return false; }
269 
270  if (cpt(node).domainSize() != from.cpt(fromnode).domainSize()) {
271  return false;
272  }
273 
274  Instantiation i(cpt(node));
275  Instantiation j(from.cpt(fromnode));
276 
277  for (i.setFirst(); !i.end(); i.inc()) {
278  for (Idx indice = 0; indice < cpt(node).nbrDim(); ++indice) {
279  const DiscreteVariable* p = &(i.variable(indice));
280  j.chgVal(*(alignment.second(p)), i.val(*p));
281  }
282 
283  if (std::pow(cpt(node).get(i) - from.cpt(fromnode).get(j), (GUM_SCALAR)2)
284  > (GUM_SCALAR)1e-6) {
285  return false;
286  }
287  }
288  }
289 
290  return true;
291  }
Size sizeArcs() const
Returns the number of arcs in this Directed Graphical Model.
Definition: DAGmodel_inl.h:42
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:39
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
Size NodeId
Type for node ids.
Definition: graphElements.h:98

◆ parents() [1/2]

INLINE const NodeSet & gum::DAGmodel::parents ( const NodeId  id) const
inherited

returns the set of nodes with arc ingoing to a given node

Note that the set of nodes returned may be empty if no arc within the ArcGraphPart is ingoing into the given node.

Parameters
idthe node toward which the nodes returned share an arc

Definition at line 46 of file DAGmodel_inl.h.

References gum::DAGmodel::_dag, and gum::ArcGraphPart::parents().

Referenced by gum::MarkovBlanket::__buildMarkovBlanket(), gum::DAGmodel::__moralGraph(), gum::BayesNetFragment< GUM_SCALAR >::_installCPT(), gum::BayesNetFragment< GUM_SCALAR >::checkConsistency(), gum::BayesNetFragment< GUM_SCALAR >::installCPT(), gum::DAGmodel::parents(), gum::prm::InstanceBayesNet< GUM_SCALAR >::toDot(), and gum::prm::ClassBayesNet< GUM_SCALAR >::toDot().

46  {
47  return _dag.parents(id);
48  }
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ parents() [2/2]

INLINE const NodeSet & gum::DAGmodel::parents ( const std::string &  name) const
inherited

returns the set of nodes with arc ingoing to a given node

Note that the set of nodes returned may be empty if no arc within the ArcGraphPart is ingoing into the given node.

Parameters
idthe node toward which the nodes returned share an arc

Definition at line 49 of file DAGmodel_inl.h.

References gum::DAGmodel::idFromName(), and gum::DAGmodel::parents().

49  {
50  return parents(idFromName(name));
51  }
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:46
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ property()

INLINE const std::string & gum::GraphicalModel::property ( const std::string &  name) const
inherited

Return the value of the property name of this GraphicalModel.

Exceptions
NotFoundRaised if no name property is found.

Definition at line 37 of file graphicalModel_inl.h.

References gum::GraphicalModel::__properties(), and GUM_ERROR.

Referenced by gum::InfluenceDiagram< GUM_SCALAR >::toDot().

37  {
38  try {
39  return __properties()[name];
40  } catch (NotFound&) {
41  std::string msg = "The following property does not exists: ";
42  GUM_ERROR(NotFound, msg + name);
43  }
44  }
HashTable< std::string, std::string > & __properties() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ propertyWithDefault()

INLINE const std::string & gum::GraphicalModel::propertyWithDefault ( const std::string &  name,
const std::string &  byDefault 
) const
inherited

Return the value of the property name of this GraphicalModel.

return byDefault if the property name is not found

Definition at line 57 of file graphicalModel_inl.h.

References gum::GraphicalModel::__properties().

58  {
59  try {
60  return __properties()[name];
61  } catch (NotFound&) { return byDefault; }
62  }
HashTable< std::string, std::string > & __properties() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...
+ Here is the call graph for this function:

◆ reverseArc() [1/3]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::reverseArc ( NodeId  tail,
NodeId  head 
)

Reverses an arc while preserving the same joint distribution.

This method uses Shachter's 1986 algorithm for reversing an arc in the Bayes net while preserving the same joint distribution. By performing this reversal, we also add new arcs (required to not alter the joint distribution)

Exceptions
InvalidArcexception if the arc does not exist or if its reversal would induce a directed cycle.

Definition at line 473 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::eraseArc(), and gum::BayesNet< double >::reverseArc().

473  {
474  reverseArc(Arc(tail, head));
475  }
void reverseArc(NodeId tail, NodeId head)
Reverses an arc while preserving the same joint distribution.
Definition: BayesNet_tpl.h:473
+ Here is the caller graph for this function:

◆ reverseArc() [2/3]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::reverseArc ( const std::string &  tail,
const std::string &  head 
)
inline

Reverses an arc while preserving the same joint distribution.

This method uses Shachter's 1986 algorithm for reversing an arc in the Bayes net while preserving the same joint distribution. By performing this reversal, we also add new arcs (required to not alter the joint distribution)

Exceptions
InvalidArcexception if the arc does not exist or if its reversal would induce a directed cycle.

Definition at line 465 of file BayesNet.h.

465  {
466  reverseArc(idFromName(tail), idFromName(head));
467  }
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314
void reverseArc(NodeId tail, NodeId head)
Reverses an arc while preserving the same joint distribution.
Definition: BayesNet_tpl.h:473

◆ reverseArc() [3/3]

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::reverseArc ( const Arc arc)

Reverses an arc while preserving the same joint distribution.

This method uses Shachter's 1986 algorithm for reversing an arc in the Bayes net while preserving the same joint distribution. By performing this reversal, we also add new arcs (required to not alter the joint distribution)

Exceptions
InvalidArcexception if the arc does not exist or if its reversal would induce a directed cycle.

Definition at line 407 of file BayesNet_tpl.h.

407  {
408  // check that the arc exsists
409  if (!__varMap.exists(arc.tail()) || !__varMap.exists(arc.head())
410  || !dag().existsArc(arc)) {
411  GUM_ERROR(InvalidArc, "a nonexisting arc cannot be reversed");
412  }
413 
414  NodeId tail = arc.tail(), head = arc.head();
415 
416  // check that the reversal does not induce a cycle
417  try {
418  DAG d = dag();
419  d.eraseArc(arc);
420  d.addArc(head, tail);
421  } catch (Exception&) {
422  GUM_ERROR(InvalidArc, "this arc reversal would induce a directed cycle");
423  }
424 
425  // with the same notations as Shachter (1986), "evaluating influence
426  // diagrams",
427  // p.878, we shall first compute the product of probabilities:
428  // pi_j^old (x_j | x_c^old(j) ) * pi_i^old (x_i | x_c^old(i) )
429  Potential< GUM_SCALAR > prod{cpt(tail) * cpt(head)};
430 
431  // modify the topology of the graph: add to tail all the parents of head
432  // and add to head all the parents of tail
434  NodeSet new_parents;
435  for (const auto node: this->parents(tail))
436  new_parents.insert(node);
437  for (const auto node: this->parents(head))
438  new_parents.insert(node);
439  // remove arc (head, tail)
440  eraseArc(arc);
441 
442  // add the necessary arcs to the tail
443  for (const auto p: new_parents) {
444  if ((p != tail) && !dag().existsArc(p, tail)) { addArc(p, tail); }
445  }
446 
447  addArc(head, tail);
448  // add the necessary arcs to the head
449  new_parents.erase(tail);
450 
451  for (const auto p: new_parents) {
452  if ((p != head) && !dag().existsArc(p, head)) { addArc(p, head); }
453  }
454 
456 
457  // update the conditional distributions of head and tail
458  Set< const DiscreteVariable* > del_vars;
459  del_vars << &(variable(tail));
460  Potential< GUM_SCALAR > new_cpt_head =
461  prod.margSumOut(del_vars).putFirst(&variable(head));
462 
463  auto& cpt_head = const_cast< Potential< GUM_SCALAR >& >(cpt(head));
464  cpt_head = std::move(new_cpt_head);
465 
466  Potential< GUM_SCALAR > new_cpt_tail{
467  (prod / cpt_head).putFirst(&variable(tail))};
468  auto& cpt_tail = const_cast< Potential< GUM_SCALAR >& >(cpt(tail));
469  cpt_tail = std::move(new_cpt_tail);
470  }
void addArc(NodeId tail, NodeId head)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:369
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:46
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
bool exists(NodeId id) const
Return true if id matches a node.
void beginTopologyTransformation()
When inserting/removing arcs, node CPTs change their dimension with a cost in time.
Definition: BayesNet_tpl.h:634
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:326
void endTopologyTransformation()
terminates a sequence of insertions/deletions of arcs by adjusting all CPTs dimensions.
Definition: BayesNet_tpl.h:641
bool existsArc(const Arc &arc) const
indicates whether a given arc exists
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:36
Size NodeId
Type for node ids.
Definition: graphElements.h:98
void insert(const Key &k)
Inserts a new element into the set.
Definition: set_tpl.h:615
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
void eraseArc(const Arc &arc)
Removes an arc in the BN, and update head&#39;s CTP.
Definition: BayesNet_tpl.h:392

◆ setProperty()

INLINE void gum::GraphicalModel::setProperty ( const std::string &  name,
const std::string &  value 
)
inherited

Add or change a property of this GraphicalModel.

Definition at line 65 of file graphicalModel_inl.h.

References gum::GraphicalModel::__properties(), and gum::HashTable< Key, Val, Alloc >::insert().

Referenced by gum::BayesNet< double >::fastPrototype(), and gum::IMarkovNet< GUM_SCALAR >::IMarkovNet().

66  {
67  try {
68  __properties()[name] = value;
69  } catch (NotFound&) { __properties().insert(name, value); }
70  }
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.
HashTable< std::string, std::string > & __properties() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ size()

INLINE Size gum::DAGmodel::size ( ) const
finalvirtualinherited

Returns the number of variables in this Directed Graphical Model.

Implements gum::GraphicalModel.

Definition at line 39 of file DAGmodel_inl.h.

References gum::DAGmodel::dag(), and gum::NodeGraphPart::size().

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__initCNNets(), gum::InfluenceDiagram< GUM_SCALAR >::decisionNodeSize(), gum::MarkovBlanket::hasSameStructure(), gum::DAGmodel::hasSameStructure(), gum::IBayesNet< double >::operator==(), gum::prm::InstanceBayesNet< GUM_SCALAR >::toDot(), and gum::prm::ClassBayesNet< GUM_SCALAR >::toDot().

39 { return dag().size(); }
Size size() const
alias for sizeNodes
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:36
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ sizeArcs()

INLINE Size gum::DAGmodel::sizeArcs ( ) const
inherited

Returns the number of arcs in this Directed Graphical Model.

Definition at line 42 of file DAGmodel_inl.h.

References gum::DAGmodel::_dag, and gum::ArcGraphPart::sizeArcs().

Referenced by gum::MarkovBlanket::hasSameStructure(), gum::DAGmodel::hasSameStructure(), and gum::IBayesNet< double >::operator==().

42 { return _dag.sizeArcs(); }
DAG _dag
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:162
Size sizeArcs() const
indicates the number of arcs stored within the ArcGraphPart
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ toDot()

template<typename GUM_SCALAR >
std::string gum::IBayesNet< GUM_SCALAR >::toDot ( ) const
virtualinherited
Returns
Returns a dot representation of this IBayesNet.

Reimplemented in gum::BayesNetFragment< GUM_SCALAR >, gum::prm::ClassBayesNet< GUM_SCALAR >, and gum::prm::InstanceBayesNet< GUM_SCALAR >.

Definition at line 166 of file IBayesNet_tpl.h.

166  {
167  std::stringstream output;
168  output << "digraph \"";
169 
170  std::string bn_name;
171 
172  try {
173  bn_name = this->property("name");
174  } catch (NotFound&) { bn_name = "no_name"; }
175 
176  output << bn_name << "\" {" << std::endl;
177  output << " graph [bgcolor=transparent,label=\"" << bn_name << "\"];"
178  << std::endl;
179  output << " node [style=filled fillcolor=\"#ffffaa\"];" << std::endl
180  << std::endl;
181 
182  for (auto node: nodes())
183  output << "\"" << variable(node).name() << "\" [comment=\"" << node << ":"
184  << variable(node).toStringWithDescription() << "\"];" << std::endl;
185 
186  output << std::endl;
187 
188  std::string tab = " ";
189 
190  for (auto node: nodes()) {
191  if (children(node).size() > 0) {
192  for (auto child: children(node)) {
193  output << tab << "\"" << variable(node).name() << "\" -> "
194  << "\"" << variable(child).name() << "\";" << std::endl;
195  }
196  } else if (parents(node).size() == 0) {
197  output << tab << "\"" << variable(node).name() << "\";" << std::endl;
198  }
199  }
200 
201  output << "}" << std::endl;
202 
203  return output.str();
204  }
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
Definition: DAGmodel_inl.h:53
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:46
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:39
const std::string toStringWithDescription() const
string version of *this using description attribute instead of name.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
const std::string & name() const
returns the name of the variable
const std::string & property(const std::string &name) const
Return the value of the property name of this GraphicalModel.

◆ topologicalOrder()

const Sequence< NodeId > & gum::DAGmodel::topologicalOrder ( bool  clear = true) const
inherited

The topological order stays the same as long as no variable or arcs are added or erased src the topology.

Parameters
clearIf false returns the previously created topology.

Definition at line 99 of file DAGmodel.cpp.

References gum::DAGmodel::dag(), and gum::DiGraph::topologicalOrder().

Referenced by gum::EssentialGraph::__buildEssentialGraph(), gum::InfluenceDiagramGenerator< GUM_SCALAR >::__checkTemporalOrder(), gum::InfluenceDiagram< GUM_SCALAR >::decisionOrderExists(), and gum::InfluenceDiagram< GUM_SCALAR >::getDecisionOrder().

99  {
100  return this->dag().topologicalOrder(clear);
101  }
const Sequence< NodeId > & topologicalOrder(bool clear=true) const
The topological order stays the same as long as no variable or arcs are added or erased src the topol...
Definition: diGraph.cpp:91
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:36
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ toString()

template<typename GUM_SCALAR >
INLINE std::string gum::IBayesNet< GUM_SCALAR >::toString ( ) const
inherited
Returns
Returns a string representation of this IBayesNet.

Definition at line 145 of file IBayesNet_tpl.h.

Referenced by gum::operator<<().

145  {
146  Size param = 0;
147  double dSize = log10DomainSize();
148 
149  for (auto node: nodes())
150  param += cpt(node).content()->realSize();
151 
152  std::stringstream s;
153  s << "BN{nodes: " << size() << ", arcs: " << dag().sizeArcs() << ", ";
154 
155  if (dSize > 6)
156  s << "domainSize: 10^" << dSize;
157  else
158  s << "domainSize: " << std::round(std::pow(10.0, dSize));
159 
160  s << ", dim: " << param << "}";
161 
162  return s.str();
163  }
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:39
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
double log10DomainSize() const
Size sizeArcs() const
indicates the number of arcs stored within the ArcGraphPart
const NodeGraphPart & nodes() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:60
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:48
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:36
+ Here is the caller graph for this function:

◆ variable() [1/2]

template<typename GUM_SCALAR >
INLINE const DiscreteVariable & gum::BayesNet< GUM_SCALAR >::variable ( NodeId  id) const
finalvirtual

Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.

Parameters
idThe variable's id to return.
Returns
Returns a constant reference of the gum::DiscreteVariable corresponding to id in the gum::BayesNet.
Exceptions
NotFoundRaised if id does not match a a variable in the gum::BayesNet.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 213 of file BayesNet_tpl.h.

Referenced by gum::credal::CredalNet< GUM_SCALAR >::__bnCopy(), gum::credal::CredalNet< GUM_SCALAR >::approximatedBinarization(), gum::BayesNetFactory< GUM_SCALAR >::BayesNetFactory(), gum::learning::genericBNLearner::Database::Database(), gum::BayesNet< double >::erase(), gum::getMaxModality(), gum::credal::CredalNet< GUM_SCALAR >::toString(), and gum::BayesNet< double >::variable().

213  {
214  return __varMap.get(id);
215  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
const DiscreteVariable & get(NodeId id) const
Returns a discrete variable given it&#39;s node id.
+ Here is the caller graph for this function:

◆ variable() [2/2]

template<typename GUM_SCALAR>
const DiscreteVariable& gum::BayesNet< GUM_SCALAR >::variable ( const std::string &  name) const
inline

Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.

Definition at line 313 of file BayesNet.h.

313  {
314  return variable(idFromName(name));
315  };
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:314

◆ variableFromName()

template<typename GUM_SCALAR >
INLINE const DiscreteVariable & gum::BayesNet< GUM_SCALAR >::variableFromName ( const std::string &  name) const
finalvirtual

Returns a variable given its name in the gum::BayesNet.

Parameters
nameThe variable's name in the gum::BayesNet.
Returns
Returns the gum::DiscreteVariable named name in the gum::BayesNet.
Exceptions
NotFoundRaised if name does not match a variable in the gum::BayesNet.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 320 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::changeVariableLabel(), and gum::BayesNet< double >::variableFromName().

320  {
321  return __varMap.variableFromName(name);
322  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
const DiscreteVariable & variableFromName(const std::string &name) const
+ Here is the caller graph for this function:

◆ variableNodeMap()

template<typename GUM_SCALAR >
INLINE const VariableNodeMap & gum::BayesNet< GUM_SCALAR >::variableNodeMap ( ) const
finalvirtual

Returns a map between variables and nodes of this gum::BayesNet.

Returns
Returns a constant reference to the gum::VariableNodeMap.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 331 of file BayesNet_tpl.h.

Referenced by gum::BayesNet< double >::cpt(), and gum::learning::DAG2BNLearner< ALLOC >::createBN().

331  {
332  return __varMap;
333  }
VariableNodeMap __varMap
the map between variable and id
Definition: BayesNet.h:667
+ Here is the caller graph for this function:

Friends And Related Function Documentation

◆ BayesNetFactory< GUM_SCALAR >

template<typename GUM_SCALAR>
friend class BayesNetFactory< GUM_SCALAR >
friend

Definition at line 79 of file BayesNet.h.

Member Data Documentation

◆ __probaMap

template<typename GUM_SCALAR>
NodeProperty< Potential< GUM_SCALAR >* > gum::BayesNet< GUM_SCALAR >::__probaMap
private

Mapping between the variable's id and their CPT.

Definition at line 670 of file BayesNet.h.

Referenced by gum::BayesNet< double >::__copyPotentials().

◆ __varMap

template<typename GUM_SCALAR>
VariableNodeMap gum::BayesNet< GUM_SCALAR >::__varMap
private

the map between variable and id

Definition at line 667 of file BayesNet.h.

Referenced by gum::BayesNet< double >::operator=().

◆ _dag


The documentation for this class was generated from the following files: