aGrUM  0.20.2
a C++ library for (probabilistic) graphical models
scoreAIC.h
Go to the documentation of this file.
1 /**
2  *
3  * Copyright 2005-2020 Pierre-Henri WUILLEMIN(@LIP6) & Christophe GONZALES(@AMU)
4  * info_at_agrum_dot_org
5  *
6  * This library is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU Lesser General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public License
17  * along with this library. If not, see <http://www.gnu.org/licenses/>.
18  *
19  */
20 
21 
22 /** @file
23  * @brief the class for computing AIC scores
24  *
25  * @author Christophe GONZALES(@AMU) and Pierre-Henri WUILLEMIN(@LIP6)
26  */
27 
28 #ifndef GUM_LEARNING_SCORE_AIC_H
29 #define GUM_LEARNING_SCORE_AIC_H
30 
31 #include <string>
32 
33 #include <agrum/agrum.h>
34 #include <agrum/tools/core/math/math_utils.h>
35 #include <agrum/BN/learning/scores_and_tests/score.h>
36 #include <agrum/BN/learning/aprioris/aprioriNoApriori.h>
37 
38 namespace gum {
39 
40  namespace learning {
41 
42  /** @class ScoreAIC
43  * @brief the class for computing AIC scores
44  * @headerfile scoreAIC.h <agrum/BN/learning/scores_and_tests/scoreAIC.h>
45  * @ingroup learning_scores
46  *
47  * @warning If you pass an apriori to the score, this one will be added
48  * into the log-likelihood part of the score.
49  */
50  template < template < typename > class ALLOC = std::allocator >
51  class ScoreAIC: public Score< ALLOC > {
52  public:
53  /// type for the allocators passed in arguments of methods
55 
56  // ##########################################################################
57  /// @name Constructors / Destructors
58  // ##########################################################################
59  /// @{
60 
61  /// default constructor
62  /** @param parser the parser used to parse the database
63  * @param apriori An apriori that we add to the computation of the score
64  * @param ranges a set of pairs {(X1,Y1),...,(Xn,Yn)} of database's rows
65  * indices. The countings are then performed only on the union of the
66  * rows [Xi,Yi), i in {1,...,n}. This is useful, e.g, when performing
67  * cross validation tasks, in which part of the database should be ignored.
68  * An empty set of ranges is equivalent to an interval [X,Y) ranging over
69  * the whole database.
70  * @param nodeId2Columns a mapping from the ids of the nodes in the
71  * graphical model to the corresponding column in the DatabaseTable
72  * parsed by the parser. This enables estimating from a database in
73  * which variable A corresponds to the 2nd column the parameters of a BN
74  * in which variable A has a NodeId of 5. An empty nodeId2Columns
75  * bijection means that the mapping is an identity, i.e., the value of a
76  * NodeId is equal to the index of the column in the DatabaseTable.
77  * @param alloc the allocator used to allocate the structures within the
78  * Score.
79  * @warning If nodeId2columns is not empty, then only the scores over the
80  * ids belonging to this bijection can be computed: applying method
81  * score() over other ids will raise exception NotFound. */
82  ScoreAIC(const DBRowGeneratorParser< ALLOC >& parser,
83  const Apriori< ALLOC >& apriori,
84  const std::vector< std::pair< std::size_t, std::size_t >,
85  ALLOC< std::pair< std::size_t, std::size_t > > >&
86  ranges,
87  const Bijection< NodeId, std::size_t, ALLOC< std::size_t > >&
89  = Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(),
91 
92 
93  /// default constructor
94  /** @param parser the parser used to parse the database
95  * @param apriori An apriori that we add to the computation of the score
96  * @param nodeId2Columns a mapping from the ids of the nodes in the
97  * graphical model to the corresponding column in the DatabaseTable
98  * parsed by the parser. This enables estimating from a database in
99  * which variable A corresponds to the 2nd column the parameters of a BN
100  * in which variable A has a NodeId of 5. An empty nodeId2Columns
101  * bijection means that the mapping is an identity, i.e., the value of a
102  * NodeId is equal to the index of the column in the DatabaseTable.
103  * @param alloc the allocator used to allocate the structures within the
104  * Score.
105  * @warning If nodeId2columns is not empty, then only the scores over the
106  * ids belonging to this bijection can be computed: applying method
107  * score() over other ids will raise exception NotFound. */
108  ScoreAIC(const DBRowGeneratorParser< ALLOC >& parser,
109  const Apriori< ALLOC >& apriori,
110  const Bijection< NodeId, std::size_t, ALLOC< std::size_t > >&
112  = Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(),
113  const allocator_type& alloc = allocator_type());
114 
115  /// copy constructor
116  ScoreAIC(const ScoreAIC< ALLOC >& from);
117 
118  /// copy constructor with a given allocator
119  ScoreAIC(const ScoreAIC< ALLOC >& from, const allocator_type& alloc);
120 
121  /// move constructor
122  ScoreAIC(ScoreAIC< ALLOC >&& from);
123 
124  /// move constructor with a given allocator
125  ScoreAIC(ScoreAIC< ALLOC >&& from, const allocator_type& alloc);
126 
127  /// virtual copy constructor
128  virtual ScoreAIC< ALLOC >* clone() const;
129 
130  /// virtual copy constructor with a given allocator
131  virtual ScoreAIC< ALLOC >* clone(const allocator_type& alloc) const;
132 
133  /// destructor
134  virtual ~ScoreAIC();
135 
136  /// @}
137 
138 
139  // ##########################################################################
140  /// @name Operators
141  // ##########################################################################
142 
143  /// @{
144 
145  /// copy operator
146  ScoreAIC< ALLOC >& operator=(const ScoreAIC< ALLOC >& from);
147 
148  /// move operator
150 
151  /// @}
152 
153 
154  // ##########################################################################
155  /// @name Accessors / Modifiers
156  // ##########################################################################
157  /// @{
158 
159  /// indicates whether the apriori is compatible (meaningful) with the score
160  /** The combination of some scores and aprioris can be meaningless. For
161  * instance, adding a Dirichlet apriori to the K2 score is not very
162  * meaningful since K2 corresonds to a BD score with a 1-smoothing
163  * apriori.
164  * aGrUM allows you to perform such combination, but you can check with
165  * method isAprioriCompatible () whether the result the score will give
166  * you is meaningful or not.
167  * @returns a non empty string if the apriori is compatible with the
168  * score.*/
169  virtual std::string isAprioriCompatible() const final;
170 
171  /// returns the internal apriori of the score
172  /** Some scores include an apriori. For instance, the K2 score is a BD
173  * score with a Laplace Apriori ( smoothing(1) ). BDeu is a BD score with
174  * a N'/(r_i * q_i) apriori, where N' is an effective sample size and r_i
175  * is the domain size of the target variable and q_i is the domain size of
176  * the Cartesian product of its parents. The goal of the score's internal
177  * apriori classes is to enable to account for these aprioris outside the
178  * score, e.g., when performing parameter estimation. It is important to
179  * note that, to be meaningful, a structure + parameter learning requires
180  * that the same aprioris are taken into account during structure learning
181  * and parameter learning. */
182  virtual const Apriori< ALLOC >& internalApriori() const final;
183 
184  /// @}
185 
186 
187  /// indicates whether the apriori is compatible (meaningful) with the score
188  /** @returns a non empty string if the apriori is compatible with the score.
189  */
190  static std::string isAprioriCompatible(const std::string& apriori_type,
191  double weight = 1.0f);
192 
193  /// indicates whether the apriori is compatible (meaningful) with the score
194  /** a non empty string if the apriori is compatible with the score. */
195  static std::string isAprioriCompatible(const Apriori< ALLOC >& apriori);
196 
197 
198  protected:
199  /// returns the score for a given IdCondSet
200  /** @throws OperationNotAllowed is raised if the score does not support
201  * calling method score such an idset (due to too many/too few variables
202  * in the left hand side or the right hand side of the idset). */
203  virtual double score_(const IdCondSet< ALLOC >& idset) final;
204 
205 
206 #ifndef DOXYGEN_SHOULD_SKIP_THIS
207 
208  private:
209  /// the internal apriori of the score
210  AprioriNoApriori< ALLOC > internal_apriori__;
211 
212 #endif /* DOXYGEN_SHOULD_SKIP_THIS */
213  };
214 
215  } /* namespace learning */
216 
217 } /* namespace gum */
218 
219 
220 #ifndef GUM_NO_EXTERN_TEMPLATE_CLASS
221 extern template class gum::learning::ScoreAIC<>;
222 #endif
223 
224 
225 // always include the template implementation
226 #include <agrum/BN/learning/scores_and_tests/scoreAIC_tpl.h>
227 
228 #endif /* GUM_LEARNING_SCORE_AIC_H */
virtual ~ScoreAIC()
destructor
INLINE void emplace(Args &&... args)
Definition: set_tpl.h:669
ScoreAIC< ALLOC > & operator=(const ScoreAIC< ALLOC > &from)
copy operator
virtual double score_(const IdCondSet< ALLOC > &idset) final
returns the score for a given IdCondSet
static std::string isAprioriCompatible(const Apriori< ALLOC > &apriori)
indicates whether the apriori is compatible (meaningful) with the score
ScoreAIC(ScoreAIC< ALLOC > &&from, const allocator_type &alloc)
move constructor with a given allocator
virtual ScoreAIC< ALLOC > * clone(const allocator_type &alloc) const
virtual copy constructor with a given allocator
ScoreAIC< ALLOC > & operator=(ScoreAIC< ALLOC > &&from)
move operator
virtual ScoreAIC< ALLOC > * clone() const
virtual copy constructor
virtual const Apriori< ALLOC > & internalApriori() const final
returns the internal apriori of the score
ScoreAIC(const ScoreAIC< ALLOC > &from)
copy constructor
ScoreAIC(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &apriori, const std::vector< std::pair< std::size_t, std::size_t >, ALLOC< std::pair< std::size_t, std::size_t > > > &ranges, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())
default constructor
the class for computing AIC scores
Definition: scoreAIC.h:51
ScoreAIC(const DBRowGeneratorParser< ALLOC > &parser, const Apriori< ALLOC > &apriori, const Bijection< NodeId, std::size_t, ALLOC< std::size_t > > &nodeId2columns=Bijection< NodeId, std::size_t, ALLOC< std::size_t > >(), const allocator_type &alloc=allocator_type())
default constructor
ScoreAIC(ScoreAIC< ALLOC > &&from)
move constructor
static std::string isAprioriCompatible(const std::string &apriori_type, double weight=1.0f)
indicates whether the apriori is compatible (meaningful) with the score
Database(const std::string &filename, const BayesNet< GUM_SCALAR > &bn, const std::vector< std::string > &missing_symbols)
virtual std::string isAprioriCompatible() const final
indicates whether the apriori is compatible (meaningful) with the score
ScoreAIC(const ScoreAIC< ALLOC > &from, const allocator_type &alloc)
copy constructor with a given allocator