aGrUM  0.20.2
a C++ library for (probabilistic) graphical models
gum::BayesNet< GUM_SCALAR > Class Template Reference

Class representing a Bayesian network. More...

#include <agrum/BN/BayesNet.h>

+ Inheritance diagram for gum::BayesNet< GUM_SCALAR >:
+ Collaboration diagram for gum::BayesNet< GUM_SCALAR >:

Public Member Functions

NodeId addNoisyAND (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a noisyAND implementation. More...
 
NodeId addNoisyAND (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, its associate node and a noisyAND implementation. More...
 
NodeId addLogit (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a Logit implementation. More...
 
NodeId addLogit (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, its associate node and a Logit implementation. More...
 
NodeId addOR (const DiscreteVariable &var)
 Add a variable, it's associate node and an OR implementation. More...
 
NodeId addAND (const DiscreteVariable &var)
 Add a variable, it's associate node and an AND implementation. More...
 
void addWeightedArc (NodeId tail, NodeId head, GUM_SCALAR causalWeight)
 Add an arc in the BN, and update arc.head's CPT. More...
 
void addWeightedArc (const std::string &tail, const std::string &head, GUM_SCALAR causalWeight)
 Add an arc in the BN, and update arc.head's CPT. More...
 
void generateCPTs () const
 randomly generates CPTs for a given structure More...
 
void generateCPT (NodeId node) const
 randomly generate CPT for a given node in a given structure More...
 
void generateCPT (const std::string &name) const
 
void changePotential (NodeId id, Potential< GUM_SCALAR > *newPot)
 change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId. More...
 
void changePotential (const std::string &name, Potential< GUM_SCALAR > *newPot)
 
bool operator== (const IBayesNet< GUM_SCALAR > &from) const
 This operator compares 2 BNs ! More...
 
bool operator!= (const IBayesNet< GUM_SCALAR > &from) const
 
Size dim () const
 Returns the dimension (the number of free parameters) in this bayes net. More...
 
Size maxVarDomainSize () const
 
GUM_SCALAR minParam () const
 
GUM_SCALAR maxParam () const
 
GUM_SCALAR minNonZeroParam () const
 
GUM_SCALAR maxNonOneParam () const
 
virtual std::string toDot () const
 
std::string toString () const
 
NodeSet minimalCondSet (NodeId target, const NodeSet &soids) const
 
NodeSet minimalCondSet (const NodeSet &targets, const NodeSet &soids) const
 
bool hasSameStructure (const DAGmodel &other)
 
double log10DomainSize () const
 
Constructors and Destructor
 BayesNet ()
 Default constructor. More...
 
 BayesNet (std::string name)
 Default constructor. More...
 
virtual ~BayesNet () final
 Destructor. More...
 
 BayesNet (const BayesNet< GUM_SCALAR > &source)
 Copy constructor. More...
 
Operators
BayesNet< GUM_SCALAR > & operator= (const BayesNet< GUM_SCALAR > &source)
 Copy operator. More...
 
Variable manipulation methods
const Potential< GUM_SCALAR > & cpt (NodeId varId) const final
 Returns the CPT of a variable. More...
 
const Potential< GUM_SCALAR > & cpt (const std::string &name) const
 Returns the CPT of a variable. More...
 
const VariableNodeMapvariableNodeMap () const final
 Returns a map between variables and nodes of this gum::BayesNet. More...
 
NodeId add (const DiscreteVariable &var)
 Add a variable to the gum::BayesNet. More...
 
NodeId add (const std::string &name, unsigned int nbrmod)
 Shortcut for add(gum::LabelizedVariable(name,name,nbrmod)) More...
 
NodeId add (const DiscreteVariable &var, MultiDimImplementation< GUM_SCALAR > *aContent)
 Add a variable to the gum::BayesNet. More...
 
NodeId add (const DiscreteVariable &var, NodeId id)
 Add a variable to the gum::BayesNet. More...
 
NodeId add (const DiscreteVariable &var, MultiDimImplementation< GUM_SCALAR > *aContent, NodeId id)
 Add a variable to the gum::BayesNet. More...
 
void clear ()
 clear the whole Bayes net * More...
 
void erase (NodeId varId)
 Remove a variable from the gum::BayesNet. More...
 
void erase (const std::string &name)
 Removes a variable from the gum::BayesNet. More...
 
void erase (const DiscreteVariable &var)
 Remove a variable from the gum::BayesNet. More...
 
const DiscreteVariablevariable (NodeId id) const final
 Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet. More...
 
const DiscreteVariablevariable (const std::string &name) const
 Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet. More...
 
void changeVariableName (NodeId id, const std::string &new_name)
 Changes a variable's name in the gum::BayesNet. More...
 
void changeVariableName (const std::string &name, const std::string &new_name)
 Changes a variable's name. More...
 
void changeVariableLabel (NodeId id, const std::string &old_label, const std::string &new_label)
 Changes a variable's label in the gum::BayesNet. More...
 
void changeVariableLabel (const std::string &name, const std::string &old_label, const std::string &new_label)
 Changes a variable's name. More...
 
NodeId nodeId (const DiscreteVariable &var) const final
 Returns a variable's id in the gum::BayesNet. More...
 
NodeId idFromName (const std::string &name) const final
 Returns a variable's id given its name in the gum::BayesNet. More...
 
const DiscreteVariablevariableFromName (const std::string &name) const final
 Returns a variable given its name in the gum::BayesNet. More...
 
Arc manipulation methods.
void addArc (NodeId tail, NodeId head)
 Add an arc in the BN, and update arc.head's CPT. More...
 
void addArc (const std::string &tail, const std::string &head)
 Add an arc in the BN, and update arc.head's CPT. More...
 
void eraseArc (const Arc &arc)
 Removes an arc in the BN, and update head's CTP. More...
 
void eraseArc (NodeId tail, NodeId head)
 Removes an arc in the BN, and update head's CTP. More...
 
void eraseArc (const std::string &tail, const std::string &head)
 Removes an arc in the BN, and update head's CTP. More...
 
void beginTopologyTransformation ()
 When inserting/removing arcs, node CPTs change their dimension with a cost in time. More...
 
void endTopologyTransformation ()
 terminates a sequence of insertions/deletions of arcs by adjusting all CPTs dimensions. More...
 
void reverseArc (NodeId tail, NodeId head)
 Reverses an arc while preserving the same joint distribution. More...
 
void reverseArc (const std::string &tail, const std::string &head)
 Reverses an arc while preserving the same joint distribution. More...
 
void reverseArc (const Arc &arc)
 Reverses an arc while preserving the same joint distribution. More...
 
Accessors for nodes with CI or logical implementation
NodeId addNoisyOR (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, it's associate node and a gum::noisyOR implementation. More...
 
NodeId addNoisyORNet (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, it's associate node and a gum::noisyOR implementation. More...
 
NodeId addNoisyORCompound (const DiscreteVariable &var, GUM_SCALAR external_weight)
 Add a variable, it's associate node and a gum::noisyOR implementation. More...
 
NodeId addNoisyOR (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a noisyOR implementation. More...
 
NodeId addNoisyORNet (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a noisyOR implementation. More...
 
NodeId addNoisyORCompound (const DiscreteVariable &var, GUM_SCALAR external_weight, NodeId id)
 Add a variable, its associate node and a noisyOR implementation. More...
 
NodeId addAMPLITUDE (const DiscreteVariable &var)
 Others aggregators. More...
 
NodeId addCOUNT (const DiscreteVariable &var, Idx value=1)
 Others aggregators. More...
 
NodeId addEXISTS (const DiscreteVariable &var, Idx value=1)
 Others aggregators. More...
 
NodeId addFORALL (const DiscreteVariable &var, Idx value=1)
 Others aggregators. More...
 
NodeId addMAX (const DiscreteVariable &var)
 Others aggregators. More...
 
NodeId addMEDIAN (const DiscreteVariable &var)
 Others aggregators. More...
 
NodeId addMIN (const DiscreteVariable &var)
 Others aggregators. More...
 
NodeId addSUM (const DiscreteVariable &var)
 Others aggregators. More...
 
Joint Probability manipulation methods
GUM_SCALAR jointProbability (const Instantiation &i) const
 Compute a parameter of the joint probability for the BN (given an instantiation of the vars) More...
 
GUM_SCALAR log2JointProbability (const Instantiation &i) const
 Compute a parameter of the log joint probability for the BN (given an instantiation of the vars) More...
 
Variable manipulation methods.
const DAGdag () const
 Returns a constant reference to the dag of this Bayes Net. More...
 
virtual Size size () const final
 Returns the number of variables in this Directed Graphical Model. More...
 
Size sizeArcs () const
 Returns the number of arcs in this Directed Graphical Model. More...
 
const NodeGraphPartnodes () const final
 Returns a constant reference to the dag of this Bayes Net. More...
 
bool exists (NodeId node) const final
 Return true if this node exists in this graphical model. More...
 
Variable manipulation methods.
bool exists (const std::string &name) const
 Return true if this graphical model is empty. More...
 
virtual bool empty () const
 Return true if this graphical model is empty. More...
 
std::vector< std::string > names (const std::vector< NodeId > &ids) const
 transform a vector of NodeId in a vector of names More...
 
std::vector< std::string > names (const NodeSet &ids) const
 transform a NodeSet in a vector of names More...
 
std::vector< NodeIdids (const std::vector< std::string > &names) const
 transform a vector of names into a vector of nodeId More...
 
NodeSet nodeset (const std::vector< std::string > &names) const
 transform a vector of names into a NodeSet More...
 
Instantiation completeInstantiation () const
 Get an instantiation over all the variables of the model. More...
 
Arc manipulation methods.
const ArcSetarcs () const
 return true if the arc tail->head exists in the DAGmodel More...
 
bool existsArc (const NodeId tail, const NodeId head) const
 return true if the arc tail->head exists in the DAGmodel More...
 
bool existsArc (const std::string &nametail, const std::string &namehead) const
 return true if the arc tail->head exists in the DAGmodel More...
 
const NodeSetparents (const NodeId id) const
 returns the set of nodes with arc ingoing to a given node More...
 
const NodeSetparents (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet parents (const NodeSet &ids) const
 returns the parents of a set of nodes More...
 
NodeSet parents (const std::vector< std::string > &names) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet family (const NodeId id) const
 returns the parents of a node and the node More...
 
NodeSet family (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
const NodeSetchildren (const NodeId id) const
 returns the set of nodes with arc outgoing from a given node More...
 
const NodeSetchildren (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet children (const NodeSet &ids) const
 returns the children of a set of nodes More...
 
NodeSet children (const std::vector< std::string > &names) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet descendants (const NodeId id) const
 returns the set of nodes with directed path outgoing from a given node More...
 
NodeSet descendants (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet ancestors (const NodeId id) const
 returns the set of nodes with directed path ingoing to a given node More...
 
NodeSet ancestors (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
Graphical methods
UndiGraph moralizedAncestralGraph (const NodeSet &nodes) const
 build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes More...
 
UndiGraph moralizedAncestralGraph (const std::vector< std::string > &nodenames) const
 build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes More...
 
bool isIndependent (NodeId X, NodeId Y, const NodeSet &Z) const final
 check if node X and node Y are independent given nodes Z More...
 
bool isIndependent (const NodeSet &X, const NodeSet &Y, const NodeSet &Z) const final
 check if nodes X and nodes Y are independent given nodes Z More...
 
bool isIndependent (const std::string &Xname, const std::string &Yname, const std::vector< std::string > &Znames) const
 build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes More...
 
bool isIndependent (const std::vector< std::string > &Xnames, const std::vector< std::string > &Ynames, const std::vector< std::string > &Znames) const
 build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes More...
 
const UndiGraphmoralGraph (bool clear=true) const
 The node's id are coherent with the variables and nodes of the topology. More...
 
const Sequence< NodeId > & topologicalOrder (bool clear=true) const
 The topological order stays the same as long as no variable or arcs are added or erased src the topology. More...
 
Getter and setters
const std::string & property (const std::string &name) const
 Return the value of the property name of this GraphicalModel. More...
 
const std::string & propertyWithDefault (const std::string &name, const std::string &byDefault) const
 Return the value of the property name of this GraphicalModel. More...
 
void setProperty (const std::string &name, const std::string &value)
 Add or change a property of this GraphicalModel. More...
 

Static Public Member Functions

static BayesNet< GUM_SCALAR > fastPrototype (const std::string &dotlike, Size domainSize=2)
 Create a Bayesian network with a dot-like syntax which specifies: More...
 

Protected Attributes

DAG dag_
 The DAG of this Directed Graphical Model. More...
 

Friends

class BayesNetFactory< GUM_SCALAR >
 

Detailed Description

template<typename GUM_SCALAR>
class gum::BayesNet< GUM_SCALAR >

Class representing a Bayesian network.

Bayesian networks are a probabilistic graphical model in which nodes are random variables and the probability distribution is defined by the product:

\(P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | \pi(X_i))\),

where \(\pi(X_i)\) is the parent of \(X_i\).

The probability distribution can be represented as a directed acyclic graph (DAG) where:

  • Nodes are discrete random variables.
  • An arc A -> B represent a dependency between variables A and B, i.e. B conditional probability distribution is defined as \(P(B| \pi(B)\).

After a variable is added to the BN, it's domain cannot change. But it arcs are added, the data in its CPT are lost.

You should look a the gum::BayesNetFactory class which can help build Bayesian networks.

You can print a BayesNet using gum::operator<<(std::ostream&, const BayesNet<GUM_SCALAR>&).

Definition at line 77 of file BayesNet.h.

Constructor & Destructor Documentation

◆ BayesNet() [1/3]

template<typename GUM_SCALAR >
INLINE gum::BayesNet< GUM_SCALAR >::BayesNet ( )

Default constructor.

Definition at line 171 of file BayesNet_tpl.h.

171  : IBayesNet< GUM_SCALAR >() {
172  GUM_CONSTRUCTOR(BayesNet);
173  }
BayesNet()
Default constructor.
Definition: BayesNet_tpl.h:171

◆ BayesNet() [2/3]

template<typename GUM_SCALAR >
INLINE gum::BayesNet< GUM_SCALAR >::BayesNet ( std::string  name)
explicit

Default constructor.

Parameters
nameThe BayesNet's name.

Definition at line 176 of file BayesNet_tpl.h.

176  :
177  IBayesNet< GUM_SCALAR >(name) {
178  GUM_CONSTRUCTOR(BayesNet);
179  }
BayesNet()
Default constructor.
Definition: BayesNet_tpl.h:171

◆ ~BayesNet()

template<typename GUM_SCALAR >
gum::BayesNet< GUM_SCALAR >::~BayesNet ( )
finalvirtual

Destructor.

Definition at line 204 of file BayesNet_tpl.h.

204  {
205  GUM_DESTRUCTOR(BayesNet);
206  for (const auto p: probaMap__) {
207  delete p.second;
208  }
209  }
BayesNet()
Default constructor.
Definition: BayesNet_tpl.h:171
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670

◆ BayesNet() [3/3]

template<typename GUM_SCALAR>
gum::BayesNet< GUM_SCALAR >::BayesNet ( const BayesNet< GUM_SCALAR > &  source)

Copy constructor.

Definition at line 182 of file BayesNet_tpl.h.

182  :
183  IBayesNet< GUM_SCALAR >(source), varMap__(source.varMap__) {
184  GUM_CONS_CPY(BayesNet);
185 
186  copyPotentials__(source);
187  }
BayesNet()
Default constructor.
Definition: BayesNet_tpl.h:171
void copyPotentials__(const BayesNet< GUM_SCALAR > &source)
copy of potentials from a BN to another, using names of vars as ref.
Definition: BayesNet_tpl.h:670
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667

Member Function Documentation

◆ add() [1/5]

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::add ( const DiscreteVariable var)

Add a variable to the gum::BayesNet.

Add a gum::DiscreteVariable, it's associated gum::NodeId and it's gum::Potential.

The variable is added by copy to the gum::BayesNet. The variable's gum::Potential implementation will be a gum::MultiDimArray.

Parameters
varThe variable added by copy.
Returns
Returns the variable's id in the gum::BayesNet.
Exceptions
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.

Definition at line 245 of file BayesNet_tpl.h.

245  {
246  auto ptr = new MultiDimArray< GUM_SCALAR >();
247  NodeId res = 0;
248 
249  try {
250  res = add(var, ptr);
251 
252  } catch (Exception&) {
253  delete ptr;
254  throw;
255  }
256 
257  return res;
258  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ add() [2/5]

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::add ( const std::string &  name,
unsigned int  nbrmod 
)

Shortcut for add(gum::LabelizedVariable(name,name,nbrmod))

Add a gum::LabelizedVariable to the gum::BayesNet

This method is just a shortcut for a often used pattern

Exceptions
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.
NotAllowedif nbrmod<2

Definition at line 261 of file BayesNet_tpl.h.

262  {
263  if (nbrmod < 2) {
264  GUM_ERROR(OperationNotAllowed,
265  "Variable " << name << "needs more than " << nbrmod
266  << " modalities");
267  }
268 
269  RangeVariable v(name, name, 0, nbrmod - 1);
270  return add(v);
271  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ add() [3/5]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::add ( const DiscreteVariable var,
MultiDimImplementation< GUM_SCALAR > *  aContent 
)

Add a variable to the gum::BayesNet.

Add a gum::DiscreteVariable, it's associated gum::NodeId and it's gum::Potential.

The variable is added by copy to the gum::BayesNet.

Parameters
varThe variable added by copy.
aContentThe gum::MultiDimImplementation to use for this variable's gum::Potential implementation.
Returns
Returns the variable's id in the gum::BayesNet.
Exceptions
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.

Definition at line 275 of file BayesNet_tpl.h.

276  {
277  NodeId proposedId = dag().nextNodeId();
278  NodeId res = 0;
279 
280  res = add(var, aContent, proposedId);
281 
282  return res;
283  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245
NodeId nextNodeId() const
returns a new node id, not yet used by any node
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ add() [4/5]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::add ( const DiscreteVariable var,
NodeId  id 
)

Add a variable to the gum::BayesNet.

Add a gum::DiscreteVariable, it's associated gum::NodeId and it's gum::Potential.

The variable is added by copy to the gum::BayesNet. The variable's gum::Potential implementation will be a gum::MultiDimArray.

Parameters
varThe variable added by copy.
idThe variable's forced gum::NodeId in the gum::BayesNet.
Returns
Returns the variable's id in the gum::BayesNet.
Exceptions
DuplicateElementRaised id is already used.
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.

Definition at line 286 of file BayesNet_tpl.h.

287  {
288  auto ptr = new MultiDimArray< GUM_SCALAR >();
289  NodeId res = 0;
290 
291  try {
292  res = add(var, ptr, id);
293 
294  } catch (Exception&) {
295  delete ptr;
296  throw;
297  }
298 
299  return res;
300  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ add() [5/5]

template<typename GUM_SCALAR>
NodeId gum::BayesNet< GUM_SCALAR >::add ( const DiscreteVariable var,
MultiDimImplementation< GUM_SCALAR > *  aContent,
NodeId  id 
)

Add a variable to the gum::BayesNet.

Add a gum::DiscreteVariable, it's associated gum::NodeId and it's gum::Potential.

Parameters
varThe variable added by copy.
aContentThe gum::MultiDimImplementation to use for this variable's gum::Potential implementation.
idThe variable's forced gum::NodeId in the gum::BayesNet.
Returns
Returns the variable's id in the gum::BayesNet.
Exceptions
DuplicateElementRaised id is already used.
DuplicateLabelRaised if variable.name() is already used in this gum::BayesNet.

Definition at line 304 of file BayesNet_tpl.h.

306  {
307  varMap__.insert(id, var);
308  this->dag_.addNodeWithId(id);
309 
310  auto cpt = new Potential< GUM_SCALAR >(aContent);
311  (*cpt) << variable(id);
312  probaMap__.insert(id, cpt);
313  return id;
314  }
virtual void addNodeWithId(const NodeId id)
try to insert a node with the given id
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
NodeId insert(NodeId id, const DiscreteVariable &var)
Maps id with var.
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:329
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225

◆ addAMPLITUDE()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addAMPLITUDE ( const DiscreteVariable var)

Others aggregators.

Definition at line 485 of file BayesNet_tpl.h.

485  {
486  return add(var, new aggregator::Amplitude< GUM_SCALAR >());
487  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addAND()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addAND ( const DiscreteVariable var)

Add a variable, it's associate node and an AND implementation.

The id of the new variable is automatically generated.

Warning
AND is implemented as a gum::aggregator::And which means that if parents are not boolean, all value>1 is True
Parameters
varThe variable added by copy.
Returns
the id of the added variable.
Exceptions
SizeErrorif variable.domainSize()>2

Definition at line 490 of file BayesNet_tpl.h.

490  {
491  if (var.domainSize() > 2) GUM_ERROR(SizeError, "an AND has to be boolean");
492 
493  return add(var, new aggregator::And< GUM_SCALAR >());
494  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ addArc() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::addArc ( NodeId  tail,
NodeId  head 
)

Add an arc in the BN, and update arc.head's CPT.

Parameters
headand
tailas NodeId
Exceptions
InvalidEdgeIf arc.tail and/or arc.head are not in the BN.
DuplicateElementif the arc already exists

Definition at line 372 of file BayesNet_tpl.h.

372  {
373  if (this->dag_.existsArc(tail, head)) {
374  GUM_ERROR(DuplicateElement,
375  "The arc (" << tail << "," << head << ") already exists.")
376  }
377 
378  this->dag_.addArc(tail, head);
379  // Add parent in the child's CPT
380  (*(probaMap__[head])) << variable(tail);
381  }
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
void addArc(NodeId tail, NodeId head) final
insert a new arc into the directed graph
Definition: DAG_inl.h:42
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
bool existsArc(const Arc &arc) const
indicates whether a given arc exists
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ addArc() [2/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::addArc ( const std::string &  tail,
const std::string &  head 
)

Add an arc in the BN, and update arc.head's CPT.

Exceptions
gum::DuplicateElementif the arc already exists

Definition at line 384 of file BayesNet_tpl.h.

385  {
386  try {
387  addArc(this->idFromName(tail), this->idFromName(head));
388  } catch (DuplicateElement) {
389  GUM_ERROR(DuplicateElement,
390  "The arc " << tail << "->" << head << " already exists.")
391  }
392  }
void addArc(NodeId tail, NodeId head)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:372
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ addCOUNT()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addCOUNT ( const DiscreteVariable var,
Idx  value = 1 
)

Others aggregators.

Definition at line 497 of file BayesNet_tpl.h.

498  {
499  return add(var, new aggregator::Count< GUM_SCALAR >(value));
500  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addEXISTS()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addEXISTS ( const DiscreteVariable var,
Idx  value = 1 
)

Others aggregators.

Definition at line 503 of file BayesNet_tpl.h.

504  {
505  if (var.domainSize() > 2) GUM_ERROR(SizeError, "an EXISTS has to be boolean");
506 
507  return add(var, new aggregator::Exists< GUM_SCALAR >(value));
508  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ addFORALL()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addFORALL ( const DiscreteVariable var,
Idx  value = 1 
)

Others aggregators.

Definition at line 511 of file BayesNet_tpl.h.

512  {
513  if (var.domainSize() > 2) GUM_ERROR(SizeError, "an EXISTS has to be boolean");
514 
515  return add(var, new aggregator::Forall< GUM_SCALAR >(value));
516  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ addLogit() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addLogit ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a Logit implementation.

Parameters
varThe variable added by copy
external_weightsee gum::MultiDimLogit
idproposed gum::nodeId for the variable
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.

Definition at line 594 of file BayesNet_tpl.h.

596  {
597  return add(var, new MultiDimLogit< GUM_SCALAR >(external_weight), id);
598  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addLogit() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addLogit ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, its associate node and a Logit implementation.

The id of the new variable is automatically generated.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimLogit
Returns
the id of the added variable.

Definition at line 574 of file BayesNet_tpl.h.

575  {
576  return add(var, new MultiDimLogit< GUM_SCALAR >(external_weight));
577  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addMAX()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addMAX ( const DiscreteVariable var)

Others aggregators.

Definition at line 519 of file BayesNet_tpl.h.

519  {
520  return add(var, new aggregator::Max< GUM_SCALAR >());
521  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addMEDIAN()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addMEDIAN ( const DiscreteVariable var)

Others aggregators.

Definition at line 524 of file BayesNet_tpl.h.

524  {
525  return add(var, new aggregator::Median< GUM_SCALAR >());
526  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addMIN()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addMIN ( const DiscreteVariable var)

Others aggregators.

Definition at line 529 of file BayesNet_tpl.h.

529  {
530  return add(var, new aggregator::Min< GUM_SCALAR >());
531  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addNoisyAND() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyAND ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a noisyAND implementation.

Parameters
varThe variable added by copy
external_weightsee gum::MultiDimNoisyAND
idproposed gum::nodeId for the variable
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.

Definition at line 587 of file BayesNet_tpl.h.

589  {
590  return add(var, new MultiDimNoisyAND< GUM_SCALAR >(external_weight), id);
591  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addNoisyAND() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyAND ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, its associate node and a noisyAND implementation.

The id of the new variable is automatically generated.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimNoisyAND
Returns
the id of the added variable.

Definition at line 568 of file BayesNet_tpl.h.

569  {
570  return add(var, new MultiDimNoisyAND< GUM_SCALAR >(external_weight));
571  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addNoisyOR() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyOR ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, it's associate node and a gum::noisyOR implementation.

The id of the new variable is automatically generated. Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the gum::BayesNet::addNoisyOR as an alias for gum::BayesNet::addNoisyORCompound

Parameters
varThe variable added by copy.
external_weightsee ref gum::MultiDimNoisyORNet,gum::MultiDimNoisyORCompound
Returns
the id of the added variable.

Definition at line 549 of file BayesNet_tpl.h.

550  {
551  return addNoisyORCompound(var, external_weight);
552  }
NodeId addNoisyORCompound(const DiscreteVariable &var, GUM_SCALAR external_weight)
Add a variable, it&#39;s associate node and a gum::noisyOR implementation.
Definition: BayesNet_tpl.h:556

◆ addNoisyOR() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyOR ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a noisyOR implementation.

Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the addNoisyOR as an alias for addNoisyORCompound.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimNoisyORNet, gum::MultiDimNoisyORCompound
idThe chosen id
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.
Exceptions
DuplicateElementif id is already used

Definition at line 580 of file BayesNet_tpl.h.

582  {
583  return addNoisyORCompound(var, external_weight, id);
584  }
NodeId addNoisyORCompound(const DiscreteVariable &var, GUM_SCALAR external_weight)
Add a variable, it&#39;s associate node and a gum::noisyOR implementation.
Definition: BayesNet_tpl.h:556

◆ addNoisyORCompound() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyORCompound ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, it's associate node and a gum::noisyOR implementation.

The id of the new variable is automatically generated. Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the gum::BayesNet::addNoisyOR as an alias for gum::BayesNet::addNoisyORCompound

Parameters
varThe variable added by copy.
external_weightsee ref gum::MultiDimNoisyORNet,gum::MultiDimNoisyORCompound
Returns
the id of the added variable.

Definition at line 556 of file BayesNet_tpl.h.

557  {
558  return add(var, new MultiDimNoisyORCompound< GUM_SCALAR >(external_weight));
559  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addNoisyORCompound() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyORCompound ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a noisyOR implementation.

Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the addNoisyOR as an alias for addNoisyORCompound.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimNoisyORNet, gum::MultiDimNoisyORCompound
idThe chosen id
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.
Exceptions
DuplicateElementif id is already used

Definition at line 602 of file BayesNet_tpl.h.

604  {
605  return add(var,
606  new MultiDimNoisyORCompound< GUM_SCALAR >(external_weight),
607  id);
608  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addNoisyORNet() [1/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyORNet ( const DiscreteVariable var,
GUM_SCALAR  external_weight 
)

Add a variable, it's associate node and a gum::noisyOR implementation.

The id of the new variable is automatically generated. Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the gum::BayesNet::addNoisyOR as an alias for gum::BayesNet::addNoisyORCompound

Parameters
varThe variable added by copy.
external_weightsee ref gum::MultiDimNoisyORNet,gum::MultiDimNoisyORCompound
Returns
the id of the added variable.

Definition at line 562 of file BayesNet_tpl.h.

563  {
564  return add(var, new MultiDimNoisyORNet< GUM_SCALAR >(external_weight));
565  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addNoisyORNet() [2/2]

template<typename GUM_SCALAR>
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addNoisyORNet ( const DiscreteVariable var,
GUM_SCALAR  external_weight,
NodeId  id 
)

Add a variable, its associate node and a noisyOR implementation.

Since it seems that the 'classical' noisyOR is the Compound noisyOR, we keep the addNoisyOR as an alias for addNoisyORCompound.

Parameters
varThe variable added by copy.
external_weightsee gum::MultiDimNoisyORNet, gum::MultiDimNoisyORCompound
idThe chosen id
Warning
give an id should be reserved for rare and specific situations !!!
Returns
the id of the added variable.
Exceptions
DuplicateElementif id is already used

Definition at line 611 of file BayesNet_tpl.h.

613  {
614  return add(var, new MultiDimNoisyORNet< GUM_SCALAR >(external_weight), id);
615  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addOR()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addOR ( const DiscreteVariable var)

Add a variable, it's associate node and an OR implementation.

The id of the new variable is automatically generated.

Warning
OR is implemented as a gum::aggregator::Or which means that if parents are not boolean, all value>1 is True
Parameters
varThe variable added by copy.
Returns
the id of the added variable.
Exceptions
SizeErrorif variable.domainSize()>2

Definition at line 534 of file BayesNet_tpl.h.

534  {
535  if (var.domainSize() > 2) GUM_ERROR(SizeError, "an OR has to be boolean");
536 
537  return add(var, new aggregator::Or< GUM_SCALAR >());
538  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ addSUM()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::addSUM ( const DiscreteVariable var)

Others aggregators.

Definition at line 541 of file BayesNet_tpl.h.

541  {
542  return add(var, new aggregator::Sum< GUM_SCALAR >());
543  }
NodeId add(const DiscreteVariable &var)
Add a variable to the gum::BayesNet.
Definition: BayesNet_tpl.h:245

◆ addWeightedArc() [1/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::addWeightedArc ( NodeId  tail,
NodeId  head,
GUM_SCALAR  causalWeight 
)

Add an arc in the BN, and update arc.head's CPT.

Parameters
headand
tailas NodeId
causalWeightsee gum::MultiDimICIModel
Exceptions
InvalidArcIf arc.tail and/or arc.head are not in the BN.
InvalidArcIf variable in arc.head is not a NoisyOR variable.

Definition at line 618 of file BayesNet_tpl.h.

620  {
621  auto* CImodel = dynamic_cast< const MultiDimICIModel< GUM_SCALAR >* >(
622  cpt(head).content());
623 
624  if (CImodel != 0) {
625  // or is OK
626  addArc(tail, head);
627 
628  CImodel->causalWeight(variable(tail), causalWeight);
629  } else {
630  GUM_ERROR(InvalidArc,
631  "Head variable (" << variable(head).name()
632  << ") is not a CIModel variable !");
633  }
634  }
void addArc(NodeId tail, NodeId head)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:372
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:329
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ addWeightedArc() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::addWeightedArc ( const std::string &  tail,
const std::string &  head,
GUM_SCALAR  causalWeight 
)
inline

Add an arc in the BN, and update arc.head's CPT.

Parameters
headand
tailas std::string
causalWeightsee gum::MultiDimICIModel
NotFoundif no node with sun names is found
Exceptions
InvalidArcIf arc.tail and/or arc.head are not in the BN.
InvalidArcIf variable in arc.head is not a NoisyOR variable.

Definition at line 636 of file BayesNet.h.

638  {
639  addWeightedArc(idFromName(tail), idFromName(head), causalWeight);
640  };
void addWeightedArc(NodeId tail, NodeId head, GUM_SCALAR causalWeight)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:618
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317

◆ ancestors() [1/2]

INLINE NodeSet gum::DAGmodel::ancestors ( const NodeId  id) const
inherited

returns the set of nodes with directed path ingoing to a given node

Note that the set of nodes returned may be empty if no path within the ArcGraphPart is ingoing to the given node.

Parameters
idthe node which is the head of a directed path with the returned nodes
namethe name of the node which is the head of a directed path with the returned nodes

Definition at line 112 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

112  {
113  return dag().ancestors(id);
114  }
NodeSet ancestors(NodeId id) const
returns the set of nodes with directed path ingoing to a given node
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ ancestors() [2/2]

INLINE NodeSet gum::DAGmodel::ancestors ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 116 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

116  {
117  return ancestors(idFromName(name));
118  }
NodeSet ancestors(const NodeId id) const
returns the set of nodes with directed path ingoing to a given node
Definition: DAGmodel_inl.h:112
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ arcs()

INLINE const ArcSet & gum::DAGmodel::arcs ( ) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 43 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

43 { return dag_.arcs(); }
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
const ArcSet & arcs() const
returns the set of arcs stored within the ArcGraphPart
+ Here is the call graph for this function:

◆ beginTopologyTransformation()

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::beginTopologyTransformation ( )

When inserting/removing arcs, node CPTs change their dimension with a cost in time.

begin Multiple Change for all CPTs

These functions delay the CPTs change to be done just once at the end of a sequence of topology modification. begins a sequence of insertions/deletions of arcs without changing the dimensions of the CPTs.

Definition at line 645 of file BayesNet_tpl.h.

645  {
646  for (const auto node: nodes())
647  probaMap__[node]->beginMultipleChanges();
648  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670

◆ changePotential() [1/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::changePotential ( NodeId  id,
Potential< GUM_SCALAR > *  newPot 
)

change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId.

Exceptions
NotAllowedif newPot has not the same signature as probaMap__[NodeId]

Definition at line 703 of file BayesNet_tpl.h.

704  {
705  if (cpt(id).nbrDim() != newPot->nbrDim()) {
706  GUM_ERROR(OperationNotAllowed,
707  "cannot exchange potentials with different "
708  "dimensions for variable with id "
709  << id);
710  }
711 
712  for (Idx i = 0; i < cpt(id).nbrDim(); i++) {
713  if (&cpt(id).variable(i) != &(newPot->variable(i))) {
714  GUM_ERROR(OperationNotAllowed,
715  "cannot exchange potentials because, for variable with id "
716  << id << ", dimension " << i << " differs. ");
717  }
718  }
719 
720  unsafeChangePotential_(id, newPot);
721  }
void unsafeChangePotential_(NodeId id, Potential< GUM_SCALAR > *newPot)
change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId.
Definition: BayesNet_tpl.h:724
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:329
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ changePotential() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::changePotential ( const std::string &  name,
Potential< GUM_SCALAR > *  newPot 
)

Definition at line 732 of file BayesNet_tpl.h.

733  {
734  changePotential(idFromName(name), newPot);
735  }
void changePotential(NodeId id, Potential< GUM_SCALAR > *newPot)
change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId.
Definition: BayesNet_tpl.h:703
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317

◆ changeVariableLabel() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::changeVariableLabel ( NodeId  id,
const std::string &  old_label,
const std::string &  new_label 
)

Changes a variable's label in the gum::BayesNet.

This will change the gum::LabelizedVariable names in the gum::BayesNet.

Exceptions
DuplicateLabelRaised if new_label is already used in this gum::LabelizedVariable.
NotFoundRaised if no variable matches id or if the variable is not a LabelizedVariable

Definition at line 226 of file BayesNet_tpl.h.

228  {
229  if (variable(id).varType() != VarType::Labelized) {
230  GUM_ERROR(NotFound, "Variable " << id << " is not a LabelizedVariable.");
231  }
232  LabelizedVariable* var = dynamic_cast< LabelizedVariable* >(
233  const_cast< DiscreteVariable* >(&variable(id)));
234 
235  var->changeLabel(var->posLabel(old_label), new_label);
236  }
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54

◆ changeVariableLabel() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::changeVariableLabel ( const std::string &  name,
const std::string &  old_label,
const std::string &  new_label 
)
inline

Changes a variable's name.

Definition at line 351 of file BayesNet.h.

353  {
354  changeVariableLabel(idFromName(name), old_label, new_label);
355  }
void changeVariableLabel(NodeId id, const std::string &old_label, const std::string &new_label)
Changes a variable&#39;s label in the gum::BayesNet.
Definition: BayesNet_tpl.h:226
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317

◆ changeVariableName() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::changeVariableName ( NodeId  id,
const std::string &  new_name 
)

Changes a variable's name in the gum::BayesNet.

This will change the gum::DiscreteVariable names in the gum::BayesNet.

Exceptions
DuplicateLabelRaised if newName is already used in this gum::BayesNet.
NotFoundRaised if no variable matches id.

Definition at line 219 of file BayesNet_tpl.h.

220  {
221  varMap__.changeName(id, new_name);
222  }
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
void changeName(NodeId id, const std::string &new_name)
we allow the user to change the name of a variable

◆ changeVariableName() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::changeVariableName ( const std::string &  name,
const std::string &  new_name 
)
inline

Changes a variable's name.

Definition at line 330 of file BayesNet.h.

330  {
331  changeVariableName(idFromName(name), new_name);
332  }
void changeVariableName(NodeId id, const std::string &new_name)
Changes a variable&#39;s name in the gum::BayesNet.
Definition: BayesNet_tpl.h:219
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317

◆ children() [1/4]

INLINE const NodeSet & gum::DAGmodel::children ( const NodeId  id) const
inherited

returns the set of nodes with arc outgoing from a given node

Note that the set of nodes returned may be empty if no node is outgoing from the given node.

Parameters
idthe node which is the tail of an arc with the returned nodes
namethe name of the node which is the tail of an arc with the returned nodes

Definition at line 70 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

70  {
71  return dag_.children(id);
72  }
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ children() [2/4]

INLINE const NodeSet & gum::DAGmodel::children ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 73 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

73  {
74  return dag_.children(idFromName(name));
75  }
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ children() [3/4]

INLINE NodeSet gum::DAGmodel::children ( const NodeSet ids) const
inherited

returns the children of a set of nodes

Definition at line 77 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

77  {
78  return dag_.children(ids);
79  }
std::vector< NodeId > ids(const std::vector< std::string > &names) const
transform a vector of names into a vector of nodeId
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ children() [4/4]

INLINE NodeSet gum::DAGmodel::children ( const std::vector< std::string > &  names) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 82 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

82  {
83  return children(nodeset(names));
84  }
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
Definition: DAGmodel_inl.h:70
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
+ Here is the call graph for this function:

◆ clear()

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::clear ( )

clear the whole Bayes net *

Definition at line 362 of file BayesNet_tpl.h.

362  {
363  if (!this->empty()) {
364  auto l = this->nodes();
365  for (const auto no: l) {
366  this->erase(no);
367  }
368  }
369  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual bool empty() const
Return true if this graphical model is empty.
void erase(NodeId varId)
Remove a variable from the gum::BayesNet.
Definition: BayesNet_tpl.h:344

◆ clearPotentials__()

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::clearPotentials__ ( )
private

clear all potentials

Definition at line 659 of file BayesNet_tpl.h.

659  {
660  // Removing previous potentials
661  for (const auto& elt: probaMap__) {
662  delete elt.second;
663  }
664 
665  probaMap__.clear();
666  }
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670

◆ completeInstantiation()

INLINE Instantiation gum::GraphicalModel::completeInstantiation ( ) const
inherited

Get an instantiation over all the variables of the model.

Definition at line 86 of file graphicalModel_inl.h.

86  {
87  Instantiation I;
88 
89  for (const auto node: nodes())
90  I << variable(node);
91 
92  return I;
93  }
virtual const NodeGraphPart & nodes() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.

◆ copyPotentials__()

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::copyPotentials__ ( const BayesNet< GUM_SCALAR > &  source)
private

copy of potentials from a BN to another, using names of vars as ref.

Definition at line 670 of file BayesNet_tpl.h.

671  {
672  // Copying potentials
673 
674  for (const auto src: source.probaMap__) {
675  // First we build the node's CPT
676  Potential< GUM_SCALAR >* copy_array = new Potential< GUM_SCALAR >();
677  copy_array->beginMultipleChanges();
678  for (gum::Idx i = 0; i < src.second->nbrDim(); i++) {
679  (*copy_array) << variableFromName(src.second->variable(i).name());
680  }
681  copy_array->endMultipleChanges();
682  copy_array->copyFrom(*(src.second));
683 
684  // We add the CPT to the CPT's hashmap
685  probaMap__.insert(src.first, copy_array);
686  }
687  }
const DiscreteVariable & variableFromName(const std::string &name) const final
Returns a variable given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:323
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
Size Idx
Type for indexes.
Definition: types.h:52

◆ cpt() [1/2]

template<typename GUM_SCALAR >
INLINE const Potential< GUM_SCALAR > & gum::BayesNet< GUM_SCALAR >::cpt ( NodeId  varId) const
finalvirtual

Returns the CPT of a variable.

Parameters
varIdA variable's id in the gum::BayesNet.
Returns
The variable's CPT.
Exceptions
NotFoundIf no variable's id matches varId.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 329 of file BayesNet_tpl.h.

329  {
330  return *(probaMap__[varId]);
331  }
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670

◆ cpt() [2/2]

template<typename GUM_SCALAR>
const Potential< GUM_SCALAR >& gum::BayesNet< GUM_SCALAR >::cpt ( const std::string &  name) const
inline

Returns the CPT of a variable.

Definition at line 165 of file BayesNet.h.

165  {
166  return cpt(idFromName(name));
167  };
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:329
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317

◆ dag()

INLINE const DAG & gum::DAGmodel::dag ( ) const
inherited

Returns a constant reference to the dag of this Bayes Net.

Definition at line 35 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

35 { return dag_; }
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ descendants() [1/2]

INLINE NodeSet gum::DAGmodel::descendants ( const NodeId  id) const
inherited

returns the set of nodes with directed path outgoing from a given node

Note that the set of nodes returned may be empty if no path within the ArcGraphPart is outgoing from the given node.

Parameters
idthe node which is the tail of a directed path with the returned nodes
namethe name of the node which is the tail of a directed path with the returned nodes

Definition at line 104 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

104  {
105  return dag().descendants(id);
106  }
NodeSet descendants(NodeId id) const
returns the set of nodes with directed path outgoing from a given node
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ descendants() [2/2]

INLINE NodeSet gum::DAGmodel::descendants ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 108 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

108  {
109  return descendants(idFromName(name));
110  }
NodeSet descendants(const NodeId id) const
returns the set of nodes with directed path outgoing from a given node
Definition: DAGmodel_inl.h:104
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ dim()

template<typename GUM_SCALAR >
Size gum::IBayesNet< GUM_SCALAR >::dim ( ) const
inherited

Returns the dimension (the number of free parameters) in this bayes net.

\( dim(G)=\sum_{i \in nodes} ((r_i-1)\cdot q_i) \) where \( r_i \) is the number of instantiations of node \( i \) and \( q_i \) is the number of instantiations of its parents.

Definition at line 79 of file IBayesNet_tpl.h.

79  {
80  Size dim = 0;
81 
82  for (auto node: nodes()) {
83  Size q = 1;
84 
85  for (auto parent: parents(node))
86  q *= variable(parent).domainSize();
87 
88  dim += (variable(node).domainSize() - 1) * q;
89  }
90 
91  return dim;
92  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:54
virtual Size domainSize() const =0
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
Size dim() const
Returns the dimension (the number of free parameters) in this bayes net.
Definition: IBayesNet_tpl.h:79
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:47

◆ empty()

INLINE bool gum::GraphicalModel::empty ( ) const
virtualinherited

Return true if this graphical model is empty.

Definition at line 96 of file graphicalModel_inl.h.

96 { return size() == 0; }
virtual Size size() const =0
Returns the number of variables in this Directed Graphical Model.

◆ endTopologyTransformation()

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::endTopologyTransformation ( )

terminates a sequence of insertions/deletions of arcs by adjusting all CPTs dimensions.

end Multiple Change for all CPTs

Definition at line 652 of file BayesNet_tpl.h.

652  {
653  for (const auto node: nodes())
654  probaMap__[node]->endMultipleChanges();
655  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670

◆ erase() [1/3]

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::erase ( NodeId  varId)

Remove a variable from the gum::BayesNet.

Removes the corresponding variable from the gum::BayesNet and from all of it's children gum::Potential.

If no variable matches the given id, then nothing is done.

Parameters
varIdThe variable's id to remove.

Definition at line 344 of file BayesNet_tpl.h.

344  {
345  if (varMap__.exists(varId)) {
346  // Reduce the variable child's CPT
347  const NodeSet& children = this->children(varId);
348 
349  for (const auto c: children) {
350  probaMap__[c]->erase(variable(varId));
351  }
352 
353  delete probaMap__[varId];
354 
355  probaMap__.erase(varId);
356  varMap__.erase(varId);
357  this->dag_.eraseNode(varId);
358  }
359  }
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
Definition: DAGmodel_inl.h:70
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
bool exists(NodeId id) const
Return true if id matches a node.
void erase(NodeId id)
Removes a var and it&#39;s id of this mapping. The pointer is deleted.
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
virtual void eraseNode(const NodeId id)
remove a node and its adjacent arcs from the graph
Definition: diGraph_inl.h:68

◆ erase() [2/3]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::erase ( const std::string &  name)
inline

Removes a variable from the gum::BayesNet.

Definition at line 282 of file BayesNet.h.

282 { erase(idFromName(name)); };
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317
void erase(NodeId varId)
Remove a variable from the gum::BayesNet.
Definition: BayesNet_tpl.h:344

◆ erase() [3/3]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::erase ( const DiscreteVariable var)

Remove a variable from the gum::BayesNet.

Removes the corresponding variable from the gum::BayesNet and from all of it's children gum::Potential.

If no variable matches the given variable, then nothing is done.

Parameters
varA reference on the variable to remove.

Definition at line 339 of file BayesNet_tpl.h.

339  {
340  erase(varMap__.get(var));
341  }
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
void erase(NodeId varId)
Remove a variable from the gum::BayesNet.
Definition: BayesNet_tpl.h:344
const DiscreteVariable & get(NodeId id) const
Returns a discrete variable given it&#39;s node id.

◆ eraseArc() [1/3]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::eraseArc ( const Arc arc)

Removes an arc in the BN, and update head's CTP.

If (tail, head) doesn't exist, the nothing happens.

Parameters
arcThe arc removed.

Definition at line 395 of file BayesNet_tpl.h.

395  {
396  if (varMap__.exists(arc.tail()) && varMap__.exists(arc.head())) {
397  NodeId head = arc.head(), tail = arc.tail();
398  this->dag_.eraseArc(arc);
399  // Remove parent froms child's CPT
400  (*(probaMap__[head])) >> variable(tail);
401  }
402  }
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
virtual void eraseArc(const Arc &arc)
removes an arc from the ArcGraphPart
bool exists(NodeId id) const
Return true if id matches a node.
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ eraseArc() [2/3]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::eraseArc ( NodeId  tail,
NodeId  head 
)

Removes an arc in the BN, and update head's CTP.

If (tail, head) doesn't exist, the nothing happens.

Parameters
headand
tailas NodeId

Definition at line 405 of file BayesNet_tpl.h.

405  {
406  eraseArc(Arc(tail, head));
407  }
void eraseArc(const Arc &arc)
Removes an arc in the BN, and update head&#39;s CTP.
Definition: BayesNet_tpl.h:395

◆ eraseArc() [3/3]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::eraseArc ( const std::string &  tail,
const std::string &  head 
)
inline

Removes an arc in the BN, and update head's CTP.

Definition at line 431 of file BayesNet.h.

431  {
432  eraseArc(idFromName(tail), idFromName(head));
433  }
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317
void eraseArc(const Arc &arc)
Removes an arc in the BN, and update head&#39;s CTP.
Definition: BayesNet_tpl.h:395

◆ exists() [1/2]

INLINE bool gum::DAGmodel::exists ( NodeId  node) const
finalvirtualinherited

Return true if this node exists in this graphical model.

Implements gum::GraphicalModel.

Definition at line 94 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

94 { return dag_.exists(node); }
bool exists(const NodeId id) const
alias for existsNode
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ exists() [2/2]

bool gum::GraphicalModel::exists ( const std::string &  name) const
inlineinherited

Return true if this graphical model is empty.

Definition at line 112 of file graphicalModel.h.

112  {
113  return exists(idFromName(name));
114  };
virtual bool exists(NodeId node) const =0
Return true if this node exists in this graphical model.
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.

◆ existsArc() [1/2]

INLINE bool gum::DAGmodel::existsArc ( const NodeId  tail,
const NodeId  head 
) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 45 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

45  {
46  return dag_.existsArc(tail, head);
47  }
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
bool existsArc(const Arc &arc) const
indicates whether a given arc exists
+ Here is the call graph for this function:

◆ existsArc() [2/2]

INLINE bool gum::DAGmodel::existsArc ( const std::string &  nametail,
const std::string &  namehead 
) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 49 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

50  {
51  return existsArc(idFromName(nametail), idFromName(namehead));
52  }
bool existsArc(const NodeId tail, const NodeId head) const
return true if the arc tail->head exists in the DAGmodel
Definition: DAGmodel_inl.h:45
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ family() [1/2]

INLINE NodeSet gum::DAGmodel::family ( const NodeId  id) const
inherited

returns the parents of a node and the node

Note that the set of nodes returned may be empty if no arc within the ArcGraphPart is ingoing into the given node.

Parameters
idthe node which is the head of an arc with the returned nodes
namethe name of the node the node which is the head of an arc with the returned nodes

Definition at line 62 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

62  {
63  return dag_.family(id);
64  }
NodeSet family(NodeId id) const
returns the set of nodes which consists in the node and its parents
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ family() [2/2]

INLINE NodeSet gum::DAGmodel::family ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 66 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

66  {
67  return dag_.family(idFromName(name));
68  }
NodeSet family(NodeId id) const
returns the set of nodes which consists in the node and its parents
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ fastPrototype()

template<typename GUM_SCALAR >
BayesNet< GUM_SCALAR > gum::BayesNet< GUM_SCALAR >::fastPrototype ( const std::string &  dotlike,
Size  domainSize = 2 
)
static

Create a Bayesian network with a dot-like syntax which specifies:

  • the structure "a->b->c;b->d<-e;".
  • the type of the variables with different syntax:

Note that if the dot-like string contains such a specification more than once for a variable, the first specification will be used.

Parameters
dotlikethe string containing the specification
domainSizethe default domain size for variables
Returns
the resulting Bayesian network

Definition at line 138 of file BayesNet_tpl.h.

139  {
141 
142 
143  for (const auto& chaine: split(dotlike, ";")) {
144  NodeId lastId = 0;
145  bool notfirst = false;
146  for (const auto& souschaine: split(chaine, "->")) {
147  bool forward = true;
148  for (const auto& node: split(souschaine, "<-")) {
149  auto idVar = build_node(bn, node, domainSize);
150  if (notfirst) {
151  if (forward) {
152  bn.addArc(lastId, idVar);
153  forward = false;
154  } else {
155  bn.addArc(idVar, lastId);
156  }
157  } else {
158  notfirst = true;
159  forward = false;
160  }
161  lastId = idVar;
162  }
163  }
164  }
165  bn.generateCPTs();
166  bn.setProperty("name", "fastPrototype");
167  return bn;
168  }
void addArc(NodeId tail, NodeId head)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:372
Class representing a Bayesian network.
Definition: BayesNet.h:77
NodeId build_node(gum::BayesNet< GUM_SCALAR > &bn, std::string node, gum::Size default_domain_size)
Definition: BayesNet_tpl.h:60
void setProperty(const std::string &name, const std::string &value)
Add or change a property of this GraphicalModel.
std::vector< std::string > split(const std::string &str, const std::string &delim)
Split str using the delimiter.
void generateCPTs() const
randomly generates CPTs for a given structure
Definition: BayesNet_tpl.h:690
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ generateCPT() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::generateCPT ( NodeId  node) const

randomly generate CPT for a given node in a given structure

Definition at line 696 of file BayesNet_tpl.h.

696  {
697  SimpleCPTGenerator< GUM_SCALAR > generator;
698 
699  generator.generateCPT(cpt(node).pos(variable(node)), cpt(node));
700  }
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:329

◆ generateCPT() [2/2]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::generateCPT ( const std::string &  name) const
inline

Definition at line 648 of file BayesNet.h.

648  {
649  generateCPT(idFromName(name));
650  };
void generateCPT(NodeId node) const
randomly generate CPT for a given node in a given structure
Definition: BayesNet_tpl.h:696
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317

◆ generateCPTs()

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::generateCPTs ( ) const

randomly generates CPTs for a given structure

Definition at line 690 of file BayesNet_tpl.h.

690  {
691  for (const auto node: nodes())
692  generateCPT(node);
693  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
void generateCPT(NodeId node) const
randomly generate CPT for a given node in a given structure
Definition: BayesNet_tpl.h:696

◆ hasSameStructure()

bool gum::DAGmodel::hasSameStructure ( const DAGmodel other)
inherited
Returns
true if all the named node are the same and all the named arcs are the same

Definition at line 74 of file DAGmodel.cpp.

References gum::Set< Key, Alloc >::emplace().

74  {
75  if (this == &other) return true;
76 
77  if (size() != other.size()) return false;
78 
79  if (sizeArcs() != other.sizeArcs()) return false;
80 
81  for (const auto& nid: nodes()) {
82  try {
83  other.idFromName(variable(nid).name());
84  } catch (NotFound) { return false; }
85  }
86 
87  for (const auto& arc: arcs()) {
88  if (!other.arcs().exists(Arc(other.idFromName(variable(arc.tail()).name()),
89  other.idFromName(variable(arc.head()).name()))))
90  return false;
91  }
92 
93  return true;
94  }
const ArcSet & arcs() const
return true if the arc tail->head exists in the DAGmodel
Definition: DAGmodel_inl.h:43
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
Size sizeArcs() const
Returns the number of arcs in this Directed Graphical Model.
Definition: DAGmodel_inl.h:41
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:38
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
+ Here is the call graph for this function:

◆ idFromName()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::idFromName ( const std::string &  name) const
finalvirtual

Returns a variable's id given its name in the gum::BayesNet.

Parameters
nameThe variable's name from which the gum::NodeId is returned.
Returns
Returns the variable gum::NodeId in the gum::BayesNet.
Exceptions
NotFoundRaised if name does not match a variable in the gum::BayesNet.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 317 of file BayesNet_tpl.h.

317  {
318  return varMap__.idFromName(name);
319  }
NodeId idFromName(const std::string &name) const
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667

◆ ids()

INLINE std::vector< NodeId > gum::GraphicalModel::ids ( const std::vector< std::string > &  names) const
inherited

transform a vector of names into a vector of nodeId

Returns
the vector of names

Definition at line 122 of file graphicalModel_inl.h.

122  {
123  std::vector< NodeId > res;
124  const VariableNodeMap& v = variableNodeMap();
125  std::transform(names.cbegin(),
126  names.cend(),
127  std::back_inserter(res),
128  [v](const std::string& n) { return v.idFromName(n); });
129  return res;
130  }
virtual const VariableNodeMap & variableNodeMap() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.

◆ isIndependent() [1/4]

INLINE bool gum::DAGmodel::isIndependent ( NodeId  X,
NodeId  Y,
const NodeSet Z 
) const
finalvirtualinherited

check if node X and node Y are independent given nodes Z

Implements gum::GraphicalModel.

Definition at line 131 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

131  {
132  return dag().dSeparation(X, Y, Z);
133  }
bool dSeparation(NodeId X, NodeId Y, const NodeSet &Z) const
check if node X and node Y are independent given nodes Z (in the sense of d-separation) ...
Definition: DAG.cpp:102
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ isIndependent() [2/4]

INLINE bool gum::DAGmodel::isIndependent ( const NodeSet X,
const NodeSet Y,
const NodeSet Z 
) const
finalvirtualinherited

check if nodes X and nodes Y are independent given nodes Z

Implements gum::GraphicalModel.

Definition at line 135 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

137  {
138  return dag().dSeparation(X, Y, Z);
139  }
bool dSeparation(NodeId X, NodeId Y, const NodeSet &Z) const
check if node X and node Y are independent given nodes Z (in the sense of d-separation) ...
Definition: DAG.cpp:102
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ isIndependent() [3/4]

bool gum::DAGmodel::isIndependent ( const std::string &  Xname,
const std::string &  Yname,
const std::vector< std::string > &  Znames 
) const
inlineinherited

build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes

Parameters
nodesthe set of nodeId
nodenamesthe vector of names of nodes
Returns
the moralized ancestral graph

Definition at line 188 of file DAGmodel.h.

190  {
191  return isIndependent(idFromName(Xname), idFromName(Yname), nodeset(Znames));
192  };
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
bool isIndependent(NodeId X, NodeId Y, const NodeSet &Z) const final
check if node X and node Y are independent given nodes Z
Definition: DAGmodel_inl.h:131

◆ isIndependent() [4/4]

bool gum::DAGmodel::isIndependent ( const std::vector< std::string > &  Xnames,
const std::vector< std::string > &  Ynames,
const std::vector< std::string > &  Znames 
) const
inlineinherited

build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes

Parameters
nodesthe set of nodeId
nodenamesthe vector of names of nodes
Returns
the moralized ancestral graph

Definition at line 194 of file DAGmodel.h.

196  {
197  return isIndependent(nodeset(Xnames), nodeset(Ynames), nodeset(Znames));
198  };
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
bool isIndependent(NodeId X, NodeId Y, const NodeSet &Z) const final
check if node X and node Y are independent given nodes Z
Definition: DAGmodel_inl.h:131

◆ jointProbability()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::jointProbability ( const Instantiation i) const
inherited

Compute a parameter of the joint probability for the BN (given an instantiation of the vars)

Warning
a variable not present in the instantiation is assumed to be instantiated to 0.

Definition at line 211 of file IBayesNet_tpl.h.

211  {
212  auto value = (GUM_SCALAR)1.0;
213 
214  GUM_SCALAR tmp;
215 
216  for (auto node: nodes()) {
217  if ((tmp = cpt(node)[i]) == (GUM_SCALAR)0) { return (GUM_SCALAR)0; }
218 
219  value *= tmp;
220  }
221 
222  return value;
223  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ log10DomainSize()

INLINE double gum::GraphicalModel::log10DomainSize ( ) const
inherited

Definition at line 75 of file graphicalModel_inl.h.

75  {
76  double dSize = 0.0;
77 
78  for (const auto node: nodes()) {
79  dSize += std::log10(variable(node).domainSize());
80  }
81 
82  return dSize;
83  }
virtual const NodeGraphPart & nodes() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.

◆ log2JointProbability()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::log2JointProbability ( const Instantiation i) const
inherited

Compute a parameter of the log joint probability for the BN (given an instantiation of the vars)

Compute a parameter of the joint probability for the BN (given an instantiation of the vars)

Warning
a variable not present in the instantiation is assumed to be instantiated to 0.

Definition at line 230 of file IBayesNet_tpl.h.

230  {
231  auto value = (GUM_SCALAR)0.0;
232 
233  GUM_SCALAR tmp;
234 
235  for (auto node: nodes()) {
236  if ((tmp = cpt(node)[i]) == (GUM_SCALAR)0) {
237  return (GUM_SCALAR)(-std::numeric_limits< double >::infinity());
238  }
239 
240  value += std::log2(cpt(node)[i]);
241  }
242 
243  return value;
244  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
Potential< GUM_SCALAR > log2(const Potential< GUM_SCALAR > &arg)
Definition: potential.h:612

◆ maxNonOneParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::maxNonOneParam ( ) const
inherited
Returns
the biggest value (not equal to 1) in the CPTs of *this
Warning
can return one if no other value in the CPTs than one....

Definition at line 135 of file IBayesNet_tpl.h.

135  {
136  GUM_SCALAR res = 0.0;
137  for (auto node: nodes()) {
138  auto v = cpt(node).maxNonOne();
139  if (v > res) { res = v; }
140  }
141  return res;
142  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ maxParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::maxParam ( ) const
inherited
Returns
the biggest value in the CPTs of *this

Definition at line 115 of file IBayesNet_tpl.h.

115  {
116  GUM_SCALAR res = 1.0;
117  for (auto node: nodes()) {
118  auto v = cpt(node).max();
119  if (v > res) { res = v; }
120  }
121  return res;
122  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ maxVarDomainSize()

template<typename GUM_SCALAR >
Size gum::IBayesNet< GUM_SCALAR >::maxVarDomainSize ( ) const
inherited
Returns
the biggest domainSize among the variables of *this

Definition at line 95 of file IBayesNet_tpl.h.

95  {
96  Size res = 0;
97  for (auto node: nodes()) {
98  auto v = variable(node).domainSize();
99  if (v > res) { res = v; }
100  }
101  return res;
102  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual Size domainSize() const =0
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:47

◆ minimalCondSet() [1/2]

template<typename GUM_SCALAR >
NodeSet gum::IBayesNet< GUM_SCALAR >::minimalCondSet ( NodeId  target,
const NodeSet soids 
) const
inherited

Definition at line 358 of file IBayesNet_tpl.h.

359  {
360  if (soids.contains(target)) return NodeSet({target});
361 
362  NodeSet res;
363  NodeSet alreadyVisitedUp;
364  NodeSet alreadyVisitedDn;
365  alreadyVisitedDn << target;
366  alreadyVisitedUp << target;
367 
368  for (auto fath: dag_.parents(target))
370  soids,
371  res,
372  alreadyVisitedUp,
373  alreadyVisitedDn);
374  for (auto chil: dag_.children(target))
376  soids,
377  res,
378  alreadyVisitedUp,
379  alreadyVisitedDn);
380  return res;
381  }
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
const NodeSet & parents(NodeId id) const
returns the set of nodes with arc ingoing to a given node
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
void minimalCondSetVisitDn__(NodeId node, const NodeSet &soids, NodeSet &minimal, NodeSet &alreadyVisitedUp, NodeSet &alreadyVisitedDn) const
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
void minimalCondSetVisitUp__(NodeId node, const NodeSet &soids, NodeSet &minimal, NodeSet &alreadyVisitedUp, NodeSet &alreadyVisitedDn) const

◆ minimalCondSet() [2/2]

template<typename GUM_SCALAR >
NodeSet gum::IBayesNet< GUM_SCALAR >::minimalCondSet ( const NodeSet targets,
const NodeSet soids 
) const
inherited

Definition at line 384 of file IBayesNet_tpl.h.

385  {
386  NodeSet res;
387  for (auto node: targets) {
388  res += minimalCondSet(node, soids);
389  }
390  return res;
391  }
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
NodeSet minimalCondSet(NodeId target, const NodeSet &soids) const

◆ minNonZeroParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::minNonZeroParam ( ) const
inherited
Returns
the smallest value (not equal to 0) in the CPTs of *this
Warning
can return 0 if no other value in the CPTs than 0...

Definition at line 125 of file IBayesNet_tpl.h.

125  {
126  GUM_SCALAR res = 1.0;
127  for (auto node: nodes()) {
128  auto v = cpt(node).minNonZero();
129  if (v < res) { res = v; }
130  }
131  return res;
132  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ minParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::minParam ( ) const
inherited
Returns
the smallest value in the CPTs of *this

Definition at line 105 of file IBayesNet_tpl.h.

105  {
106  GUM_SCALAR res = 1.0;
107  for (auto node: nodes()) {
108  auto v = cpt(node).min();
109  if (v < res) { res = v; }
110  }
111  return res;
112  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ moralGraph()

const UndiGraph & gum::DAGmodel::moralGraph ( bool  clear = true) const
inherited

The node's id are coherent with the variables and nodes of the topology.

Parameters
clearIf false returns the previously created moral graph.

Definition at line 58 of file DAGmodel.cpp.

References gum::Set< Key, Alloc >::emplace().

58  {
59  if (clear
61  == nullptr)) { // we have to call dag().moralGraph()
62  if (mutableMoralGraph__ == nullptr) {
63  mutableMoralGraph__ = new UndiGraph();
64  } else {
65  // clear is True ,__mutableMoralGraph exists
67  }
69  }
70 
71  return *mutableMoralGraph__;
72  }
void clear() override
removes all the nodes and edges from the graph
Definition: undiGraph_inl.h:46
UndiGraph moralGraph() const
build a UndiGraph by moralizing the dag
Definition: DAG.cpp:52
UndiGraph * mutableMoralGraph__
The moral graph of this Directed Graphical Model.
Definition: DAGmodel.h:233
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ moralizedAncestralGraph() [1/2]

INLINE UndiGraph gum::DAGmodel::moralizedAncestralGraph ( const NodeSet nodes) const
inherited

build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes

Parameters
nodesthe set of nodeId
nodenamesthe vector of names of nodes
Returns
the moralized ancestral graph

Definition at line 127 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

127  {
129  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
UndiGraph moralizedAncestralGraph(const NodeSet &nodes) const
build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes
Definition: DAG.cpp:76
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ moralizedAncestralGraph() [2/2]

INLINE UndiGraph gum::DAGmodel::moralizedAncestralGraph ( const std::vector< std::string > &  nodenames) const
inherited

build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes

Parameters
nodesthe set of nodeId
nodenamesthe vector of names of nodes
Returns
the moralized ancestral graph

Definition at line 121 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

122  {
123  return moralizedAncestralGraph(nodeset(nodenames));
124  }
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
UndiGraph moralizedAncestralGraph(const NodeSet &nodes) const
build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes
Definition: DAGmodel_inl.h:127
+ Here is the call graph for this function:

◆ names() [1/2]

INLINE std::vector< std::string > gum::GraphicalModel::names ( const std::vector< NodeId > &  ids) const
inherited

transform a vector of NodeId in a vector of names

Returns
the vector of names

Definition at line 100 of file graphicalModel_inl.h.

100  {
101  std::vector< std::string > res;
102  const VariableNodeMap& v = variableNodeMap();
103  std::transform(ids.cbegin(),
104  ids.cend(),
105  std::back_inserter(res),
106  [v](NodeId n) { return v[n].name(); });
107  return res;
108  }
virtual const VariableNodeMap & variableNodeMap() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ names() [2/2]

INLINE std::vector< std::string > gum::GraphicalModel::names ( const NodeSet ids) const
inherited

transform a NodeSet in a vector of names

Returns
the vector of names

Definition at line 111 of file graphicalModel_inl.h.

111  {
112  const VariableNodeMap& v = variableNodeMap();
113  std::vector< std::string > res;
114  for (auto n: ids) {
115  res.push_back(v.name(n));
116  }
117  return res;
118  }
std::vector< NodeId > ids(const std::vector< std::string > &names) const
transform a vector of names into a vector of nodeId
virtual const VariableNodeMap & variableNodeMap() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.

◆ nodeId()

template<typename GUM_SCALAR >
INLINE NodeId gum::BayesNet< GUM_SCALAR >::nodeId ( const DiscreteVariable var) const
finalvirtual

Returns a variable's id in the gum::BayesNet.

Parameters
varThe variable from which the gum::NodeId is returned.
Returns
Returns the gum::DiscreteVariable gum::NodeId in the gum::BayesNet.
Exceptions
NotFoundIf var is not in the gum::BayesNet.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 240 of file BayesNet_tpl.h.

240  {
241  return varMap__.get(var);
242  }
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
const DiscreteVariable & get(NodeId id) const
Returns a discrete variable given it&#39;s node id.

◆ nodes()

INLINE const NodeGraphPart & gum::DAGmodel::nodes ( ) const
finalvirtualinherited

Returns a constant reference to the dag of this Bayes Net.

Implements gum::GraphicalModel.

Definition at line 96 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

96  {
97  return (NodeGraphPart&)dag_;
98  }
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ nodeset()

NodeSet gum::GraphicalModel::nodeset ( const std::vector< std::string > &  names) const
inherited

transform a vector of names into a NodeSet

Returns
NodeSet

Definition at line 63 of file graphicalModel.cpp.

References gum::Set< Key, Alloc >::emplace().

63  {
64  NodeSet res;
65  for (const auto& name: names) {
66  res.insert(idFromName(name));
67  }
68  return res;
69  }
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
void insert(const Key &k)
Inserts a new element into the set.
Definition: set_tpl.h:632
+ Here is the call graph for this function:

◆ operator!=()

template<typename GUM_SCALAR>
bool gum::IBayesNet< GUM_SCALAR >::operator!= ( const IBayesNet< GUM_SCALAR > &  from) const
inherited
Returns
Returns false if the src and this are equal.

Definition at line 294 of file IBayesNet_tpl.h.

294  {
295  return !this->operator==(from);
296  }
bool operator==(const IBayesNet< GUM_SCALAR > &from) const
This operator compares 2 BNs !

◆ operator=()

template<typename GUM_SCALAR>
BayesNet< GUM_SCALAR > & gum::BayesNet< GUM_SCALAR >::operator= ( const BayesNet< GUM_SCALAR > &  source)

Copy operator.

Parameters
sourceThe copied BayesNet.
Returns
The copy of source.

Definition at line 191 of file BayesNet_tpl.h.

191  {
192  if (this != &source) {
194  varMap__ = source.varMap__;
195 
197  copyPotentials__(source);
198  }
199 
200  return *this;
201  }
IBayesNet< GUM_SCALAR > & operator=(const IBayesNet< GUM_SCALAR > &source)
Copy operator.
Definition: IBayesNet_tpl.h:67
void copyPotentials__(const BayesNet< GUM_SCALAR > &source)
copy of potentials from a BN to another, using names of vars as ref.
Definition: BayesNet_tpl.h:670
void clearPotentials__()
clear all potentials
Definition: BayesNet_tpl.h:659
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667

◆ operator==()

template<typename GUM_SCALAR>
bool gum::IBayesNet< GUM_SCALAR >::operator== ( const IBayesNet< GUM_SCALAR > &  from) const
inherited

This operator compares 2 BNs !

Warning
To identify nodes between BNs, it is assumed that they share the same name.
Returns
true if the src and this are equal.

Definition at line 247 of file IBayesNet_tpl.h.

247  {
248  if (size() != from.size()) { return false; }
249 
250  if (sizeArcs() != from.sizeArcs()) { return false; }
251 
252  // alignment of variables between the 2 BNs
253  Bijection< const DiscreteVariable*, const DiscreteVariable* > alignment;
254 
255  for (auto node: nodes()) {
256  try {
257  alignment.insert(&variable(node),
258  &from.variableFromName(variable(node).name()));
259  } catch (NotFound&) {
260  // a name is not found in from
261  return false;
262  }
263  }
264 
265  for (auto node: nodes()) {
266  NodeId fromnode = from.idFromName(variable(node).name());
267 
268  if (cpt(node).nbrDim() != from.cpt(fromnode).nbrDim()) { return false; }
269 
270  if (cpt(node).domainSize() != from.cpt(fromnode).domainSize()) {
271  return false;
272  }
273 
274  Instantiation i(cpt(node));
275  Instantiation j(from.cpt(fromnode));
276 
277  for (i.setFirst(); !i.end(); i.inc()) {
278  for (Idx indice = 0; indice < cpt(node).nbrDim(); ++indice) {
279  const DiscreteVariable* p = &(i.variable(indice));
280  j.chgVal(*(alignment.second(p)), i.val(*p));
281  }
282 
283  if (std::pow(cpt(node).get(i) - from.cpt(fromnode).get(j), (GUM_SCALAR)2)
284  > (GUM_SCALAR)1e-6) {
285  return false;
286  }
287  }
288  }
289 
290  return true;
291  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
Size sizeArcs() const
Returns the number of arcs in this Directed Graphical Model.
Definition: DAGmodel_inl.h:41
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:38
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ parents() [1/4]

INLINE const NodeSet & gum::DAGmodel::parents ( const NodeId  id) const
inherited

returns the set of nodes with arc ingoing to a given node

Note that the set of nodes returned may be empty if no arc within the ArcGraphPart is ingoing into the given node.

Parameters
idthe node which is the head of an arc with the returned nodes
namethe name of the node the node which is the head of an arc with the returned nodes

Definition at line 54 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

54  {
55  return dag_.parents(id);
56  }
const NodeSet & parents(NodeId id) const
returns the set of nodes with arc ingoing to a given node
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ parents() [2/4]

INLINE const NodeSet & gum::DAGmodel::parents ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 58 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

58  {
59  return parents(idFromName(name));
60  }
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:54
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ parents() [3/4]

INLINE NodeSet gum::DAGmodel::parents ( const NodeSet ids) const
inherited

returns the parents of a set of nodes

Definition at line 86 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

86  {
87  return dag_.children(ids);
88  }
std::vector< NodeId > ids(const std::vector< std::string > &names) const
transform a vector of names into a vector of nodeId
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ parents() [4/4]

INLINE NodeSet gum::DAGmodel::parents ( const std::vector< std::string > &  names) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 90 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

90  {
91  return parents(nodeset(names));
92  }
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:54
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
+ Here is the call graph for this function:

◆ property()

INLINE const std::string & gum::GraphicalModel::property ( const std::string &  name) const
inherited

Return the value of the property name of this GraphicalModel.

Exceptions
NotFoundRaised if no name property is found.

Definition at line 38 of file graphicalModel_inl.h.

38  {
39  try {
40  return properties__()[name];
41  } catch (NotFound&) {
42  std::string msg = "The following property does not exists: ";
43  GUM_ERROR(NotFound, msg + name);
44  }
45  }
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54
HashTable< std::string, std::string > & properties__() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...

◆ propertyWithDefault()

INLINE const std::string & gum::GraphicalModel::propertyWithDefault ( const std::string &  name,
const std::string &  byDefault 
) const
inherited

Return the value of the property name of this GraphicalModel.

return byDefault if the property name is not found

Definition at line 58 of file graphicalModel_inl.h.

59  {
60  try {
61  return properties__()[name];
62  } catch (NotFound&) { return byDefault; }
63  }
HashTable< std::string, std::string > & properties__() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...

◆ reverseArc() [1/3]

template<typename GUM_SCALAR >
INLINE void gum::BayesNet< GUM_SCALAR >::reverseArc ( NodeId  tail,
NodeId  head 
)

Reverses an arc while preserving the same joint distribution.

This method uses Shachter's 1986 algorithm for reversing an arc in the Bayes net while preserving the same joint distribution. By performing this reversal, we also add new arcs (required to not alter the joint distribution)

Exceptions
InvalidArcexception if the arc does not exist or if its reversal would induce a directed cycle.

Definition at line 476 of file BayesNet_tpl.h.

476  {
477  reverseArc(Arc(tail, head));
478  }
void reverseArc(NodeId tail, NodeId head)
Reverses an arc while preserving the same joint distribution.
Definition: BayesNet_tpl.h:476

◆ reverseArc() [2/3]

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::reverseArc ( const std::string &  tail,
const std::string &  head 
)
inline

Reverses an arc while preserving the same joint distribution.

This method uses Shachter's 1986 algorithm for reversing an arc in the Bayes net while preserving the same joint distribution. By performing this reversal, we also add new arcs (required to not alter the joint distribution)

Exceptions
InvalidArcexception if the arc does not exist or if its reversal would induce a directed cycle.

Definition at line 464 of file BayesNet.h.

464  {
465  reverseArc(idFromName(tail), idFromName(head));
466  }
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317
void reverseArc(NodeId tail, NodeId head)
Reverses an arc while preserving the same joint distribution.
Definition: BayesNet_tpl.h:476

◆ reverseArc() [3/3]

template<typename GUM_SCALAR >
void gum::BayesNet< GUM_SCALAR >::reverseArc ( const Arc arc)

Reverses an arc while preserving the same joint distribution.

This method uses Shachter's 1986 algorithm for reversing an arc in the Bayes net while preserving the same joint distribution. By performing this reversal, we also add new arcs (required to not alter the joint distribution)

Exceptions
InvalidArcexception if the arc does not exist or if its reversal would induce a directed cycle.

Definition at line 410 of file BayesNet_tpl.h.

410  {
411  // check that the arc exsists
412  if (!varMap__.exists(arc.tail()) || !varMap__.exists(arc.head())
413  || !dag().existsArc(arc)) {
414  GUM_ERROR(InvalidArc, "a nonexisting arc cannot be reversed");
415  }
416 
417  NodeId tail = arc.tail(), head = arc.head();
418 
419  // check that the reversal does not induce a cycle
420  try {
421  DAG d = dag();
422  d.eraseArc(arc);
423  d.addArc(head, tail);
424  } catch (Exception&) {
425  GUM_ERROR(InvalidArc, "this arc reversal would induce a directed cycle");
426  }
427 
428  // with the same notations as Shachter (1986), "evaluating influence
429  // diagrams",
430  // p.878, we shall first compute the product of probabilities:
431  // pi_j^old (x_j | x_c^old(j) ) * pi_i^old (x_i | x_c^old(i) )
432  Potential< GUM_SCALAR > prod{cpt(tail) * cpt(head)};
433 
434  // modify the topology of the graph: add to tail all the parents of head
435  // and add to head all the parents of tail
437  NodeSet new_parents;
438  for (const auto node: this->parents(tail))
439  new_parents.insert(node);
440  for (const auto node: this->parents(head))
441  new_parents.insert(node);
442  // remove arc (head, tail)
443  eraseArc(arc);
444 
445  // add the necessary arcs to the tail
446  for (const auto p: new_parents) {
447  if ((p != tail) && !dag().existsArc(p, tail)) { addArc(p, tail); }
448  }
449 
450  addArc(head, tail);
451  // add the necessary arcs to the head
452  new_parents.erase(tail);
453 
454  for (const auto p: new_parents) {
455  if ((p != head) && !dag().existsArc(p, head)) { addArc(p, head); }
456  }
457 
459 
460  // update the conditional distributions of head and tail
461  Set< const DiscreteVariable* > del_vars;
462  del_vars << &(variable(tail));
463  Potential< GUM_SCALAR > new_cpt_head
464  = prod.margSumOut(del_vars).putFirst(&variable(head));
465 
466  auto& cpt_head = const_cast< Potential< GUM_SCALAR >& >(cpt(head));
467  cpt_head = std::move(new_cpt_head);
468 
469  Potential< GUM_SCALAR > new_cpt_tail{
470  (prod / cpt_head).putFirst(&variable(tail))};
471  auto& cpt_tail = const_cast< Potential< GUM_SCALAR >& >(cpt(tail));
472  cpt_tail = std::move(new_cpt_tail);
473  }
void addArc(NodeId tail, NodeId head)
Add an arc in the BN, and update arc.head&#39;s CPT.
Definition: BayesNet_tpl.h:372
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:54
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
bool exists(NodeId id) const
Return true if id matches a node.
bool existsArc(const NodeId tail, const NodeId head) const
return true if the arc tail->head exists in the DAGmodel
Definition: DAGmodel_inl.h:45
void beginTopologyTransformation()
When inserting/removing arcs, node CPTs change their dimension with a cost in time.
Definition: BayesNet_tpl.h:645
const Potential< GUM_SCALAR > & cpt(NodeId varId) const final
Returns the CPT of a variable.
Definition: BayesNet_tpl.h:329
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
void endTopologyTransformation()
terminates a sequence of insertions/deletions of arcs by adjusting all CPTs dimensions.
Definition: BayesNet_tpl.h:652
bool existsArc(const Arc &arc) const
indicates whether a given arc exists
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
Size NodeId
Type for node ids.
Definition: graphElements.h:97
void insert(const Key &k)
Inserts a new element into the set.
Definition: set_tpl.h:632
#define GUM_ERROR(type, msg)
Definition: exceptions.h:54
void eraseArc(const Arc &arc)
Removes an arc in the BN, and update head&#39;s CTP.
Definition: BayesNet_tpl.h:395

◆ setProperty()

INLINE void gum::GraphicalModel::setProperty ( const std::string &  name,
const std::string &  value 
)
inherited

Add or change a property of this GraphicalModel.

Definition at line 66 of file graphicalModel_inl.h.

67  {
68  try {
69  properties__()[name] = value;
70  } catch (NotFound&) { properties__().insert(name, value); }
71  }
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.
HashTable< std::string, std::string > & properties__() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...

◆ size()

INLINE Size gum::DAGmodel::size ( ) const
finalvirtualinherited

Returns the number of variables in this Directed Graphical Model.

Implements gum::GraphicalModel.

Definition at line 38 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

38 { return dag().size(); }
Size size() const
alias for sizeNodes
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ sizeArcs()

INLINE Size gum::DAGmodel::sizeArcs ( ) const
inherited

Returns the number of arcs in this Directed Graphical Model.

Definition at line 41 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

41 { return dag_.sizeArcs(); }
Size sizeArcs() const
indicates the number of arcs stored within the ArcGraphPart
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:225
+ Here is the call graph for this function:

◆ toDot()

template<typename GUM_SCALAR >
std::string gum::IBayesNet< GUM_SCALAR >::toDot ( ) const
virtualinherited
Returns
Returns a dot representation of this IBayesNet.

Reimplemented in gum::BayesNetFragment< GUM_SCALAR >, gum::prm::ClassBayesNet< GUM_SCALAR >, and gum::prm::InstanceBayesNet< GUM_SCALAR >.

Definition at line 166 of file IBayesNet_tpl.h.

166  {
167  std::stringstream output;
168  output << "digraph \"";
169 
170  std::string bn_name;
171 
172  try {
173  bn_name = this->property("name");
174  } catch (NotFound&) { bn_name = "no_name"; }
175 
176  output << bn_name << "\" {" << std::endl;
177  output << " graph [bgcolor=transparent,label=\"" << bn_name << "\"];"
178  << std::endl;
179  output << " node [style=filled fillcolor=\"#ffffaa\"];" << std::endl
180  << std::endl;
181 
182  for (auto node: nodes())
183  output << "\"" << variable(node).name() << "\" [comment=\"" << node << ":"
184  << variable(node).toStringWithDescription() << "\"];" << std::endl;
185 
186  output << std::endl;
187 
188  std::string tab = " ";
189 
190  for (auto node: nodes()) {
191  if (children(node).size() > 0) {
192  for (auto child: children(node)) {
193  output << tab << "\"" << variable(node).name() << "\" -> "
194  << "\"" << variable(child).name() << "\";" << std::endl;
195  }
196  } else if (parents(node).size() == 0) {
197  output << tab << "\"" << variable(node).name() << "\";" << std::endl;
198  }
199  }
200 
201  output << "}" << std::endl;
202 
203  return output.str();
204  }
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
Definition: DAGmodel_inl.h:70
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:54
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:38
std::string toStringWithDescription() const
string version of *this using description attribute instead of name.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
const std::string & name() const
returns the name of the variable
const std::string & property(const std::string &name) const
Return the value of the property name of this GraphicalModel.

◆ topologicalOrder()

INLINE const Sequence< NodeId > & gum::DAGmodel::topologicalOrder ( bool  clear = true) const
inherited

The topological order stays the same as long as no variable or arcs are added or erased src the topology.

Parameters
clearIf false returns the previously created topology.

Definition at line 100 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

100  {
101  return dag().topologicalOrder(clear);
102  }
const Sequence< NodeId > & topologicalOrder(bool clear=true) const
The topological order stays the same as long as no variable or arcs are added or erased src the topol...
Definition: diGraph.cpp:90
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ toString()

template<typename GUM_SCALAR >
INLINE std::string gum::IBayesNet< GUM_SCALAR >::toString ( ) const
inherited
Returns
Returns a string representation of this IBayesNet.

Definition at line 145 of file IBayesNet_tpl.h.

145  {
146  Size param = 0;
147  double dSize = log10DomainSize();
148 
149  for (auto node: nodes())
150  param += cpt(node).content()->realSize();
151 
152  std::stringstream s;
153  s << "BN{nodes: " << size() << ", arcs: " << dag().sizeArcs() << ", ";
154 
155  if (dSize > 6)
156  s << "domainSize: 10^" << dSize;
157  else
158  s << "domainSize: " << std::round(std::pow(10.0, dSize));
159 
160  s << ", dim: " << param << "}";
161 
162  return s.str();
163  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:96
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:38
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
double log10DomainSize() const
Size sizeArcs() const
indicates the number of arcs stored within the ArcGraphPart
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:47
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35

◆ unsafeChangePotential_()

template<typename GUM_SCALAR>
void gum::BayesNet< GUM_SCALAR >::unsafeChangePotential_ ( NodeId  id,
Potential< GUM_SCALAR > *  newPot 
)
private

change the CPT associated to nodeId to newPot delete the old CPT associated to nodeId.

Warning
no verification of dimensions are performer
See also
changePotential

Definition at line 724 of file BayesNet_tpl.h.

726  {
727  delete probaMap__[id];
728  probaMap__[id] = newPot;
729  }
NodeProperty< Potential< GUM_SCALAR > *> probaMap__
Mapping between the variable&#39;s id and their CPT.
Definition: BayesNet.h:670

◆ variable() [1/2]

template<typename GUM_SCALAR >
INLINE const DiscreteVariable & gum::BayesNet< GUM_SCALAR >::variable ( NodeId  id) const
finalvirtual

Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.

Parameters
idThe variable's id to return.
Returns
Returns a constant reference of the gum::DiscreteVariable corresponding to id in the gum::BayesNet.
Exceptions
NotFoundRaised if id does not match a a variable in the gum::BayesNet.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 213 of file BayesNet_tpl.h.

213  {
214  return varMap__.get(id);
215  }
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
const DiscreteVariable & get(NodeId id) const
Returns a discrete variable given it&#39;s node id.

◆ variable() [2/2]

template<typename GUM_SCALAR>
const DiscreteVariable& gum::BayesNet< GUM_SCALAR >::variable ( const std::string &  name) const
inline

Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.

Definition at line 312 of file BayesNet.h.

312  {
313  return variable(idFromName(name));
314  };
const DiscreteVariable & variable(NodeId id) const final
Returns a gum::DiscreteVariable given its gum::NodeId in the gum::BayesNet.
Definition: BayesNet_tpl.h:213
NodeId idFromName(const std::string &name) const final
Returns a variable&#39;s id given its name in the gum::BayesNet.
Definition: BayesNet_tpl.h:317

◆ variableFromName()

template<typename GUM_SCALAR >
INLINE const DiscreteVariable & gum::BayesNet< GUM_SCALAR >::variableFromName ( const std::string &  name) const
finalvirtual

Returns a variable given its name in the gum::BayesNet.

Parameters
nameThe variable's name in the gum::BayesNet.
Returns
Returns the gum::DiscreteVariable named name in the gum::BayesNet.
Exceptions
NotFoundRaised if name does not match a variable in the gum::BayesNet.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 323 of file BayesNet_tpl.h.

323  {
324  return varMap__.variableFromName(name);
325  }
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667
const DiscreteVariable & variableFromName(const std::string &name) const

◆ variableNodeMap()

template<typename GUM_SCALAR >
INLINE const VariableNodeMap & gum::BayesNet< GUM_SCALAR >::variableNodeMap ( ) const
finalvirtual

Returns a map between variables and nodes of this gum::BayesNet.

Returns
Returns a constant reference to the gum::VariableNodeMap.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 334 of file BayesNet_tpl.h.

334  {
335  return varMap__;
336  }
VariableNodeMap varMap__
the map between variable and id
Definition: BayesNet.h:667

Friends And Related Function Documentation

◆ BayesNetFactory< GUM_SCALAR >

template<typename GUM_SCALAR>
friend class BayesNetFactory< GUM_SCALAR >
friend

Definition at line 78 of file BayesNet.h.

Member Data Documentation

◆ dag_

DAG gum::DAGmodel::dag_
protectedinherited

The DAG of this Directed Graphical Model.

Definition at line 225 of file DAGmodel.h.

◆ probaMap__

template<typename GUM_SCALAR>
NodeProperty< Potential< GUM_SCALAR >* > gum::BayesNet< GUM_SCALAR >::probaMap__
private

Mapping between the variable's id and their CPT.

Definition at line 670 of file BayesNet.h.

◆ varMap__

template<typename GUM_SCALAR>
VariableNodeMap gum::BayesNet< GUM_SCALAR >::varMap__
private

the map between variable and id

Definition at line 667 of file BayesNet.h.


The documentation for this class was generated from the following files: