aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
MonteCarloSampling.h
Go to the documentation of this file.
1 /**
2  *
3  * Copyright (c) 2005-2021 by Pierre-Henri WUILLEMIN(@LIP6) & Christophe GONZALES(@AMU)
4  * info_at_agrum_dot_org
5  *
6  * This library is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU Lesser General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public License
17  * along with this library. If not, see <http://www.gnu.org/licenses/>.
18  *
19  */
20 
21 
22 /**
23  * @file
24  * @brief This file contains Monte Carlo sampling class definition.
25  *
26  * @author Paul ALAM & Pierre-Henri WUILLEMIN(@LIP6)
27  */
28 
29 
30 #ifndef GUM_MONTE_CARLO_INFERENCE_H
31 #define GUM_MONTE_CARLO_INFERENCE_H
32 
33 #include <agrum/BN/inference/tools/samplingInference.h>
34 
35 namespace gum {
36 
37  /**
38  * @class MonteCarloInference monteCarloInference.h
39  *<agrum/BN/inference/monteCarloInference.h>
40  * @brief class for making Monte Carlo sampling inference in bayesian
41  *networks.
42  * @ingroup bn_approximation
43  *
44  * This class overrides pure function declared in the inherited class
45  *ApproximateInference.
46  * It defines the way Monte Carlo sampling draws a sample.
47  *
48  */
49 
50 
51  template < typename GUM_SCALAR >
53  public:
54  /**
55  * Default constructor
56  */
57  explicit MonteCarloSampling(const IBayesNet< GUM_SCALAR >* bn);
58 
59  /**
60  * Destructor
61  */
63 
64  protected:
65  /// draws a defined number of samples without updating the estimators
66  Instantiation burnIn_() override;
67 
68  /// draws a sample according to classic Monte Carlo sampling
69  /**
70  * @param w the weight of sample being generated
71  * @param prev the previous sample generated
72  * @param bn the Bayesian network containing the evidence
73  * @param hardEvNodes hard evidence nodes
74  * @param hardEv hard evidences values
75  *
76  * Generates a new sample using forward sampling, rejecting
77  * samples not consistent with evidence
78  *
79  */
81  };
82 
83 
84 #ifndef GUM_NO_EXTERN_TEMPLATE_CLASS
85  extern template class MonteCarloSampling< double >;
86 #endif
87 } // namespace gum
88 
89 #include <agrum/BN/inference/MonteCarloSampling_tpl.h>
90 
91 #endif
Instantiation draw_(GUM_SCALAR *w, Instantiation prev) override
draws a sample according to classic Monte Carlo sampling
INLINE void emplace(Args &&... args)
Definition: set_tpl.h:643
Instantiation burnIn_() override
draws a defined number of samples without updating the estimators
~MonteCarloSampling() override
Destructor.
MonteCarloSampling(const IBayesNet< GUM_SCALAR > *bn)
Default constructor.