34 #ifndef GUM_LEARNING_LOCAL_SEARCH_WITH_TABU_LIST_H 35 #define GUM_LEARNING_LOCAL_SEARCH_WITH_TABU_LIST_H 40 #include <agrum/BN/BayesNet.h> 41 #include <agrum/tools/core/approximations/approximationScheme.h> 42 #include <agrum/tools/graphs/DAG.h> 112 template <
typename GRAPH_CHANGES_SELECTOR >
116 template <
typename GUM_SCALAR =
double,
117 typename GRAPH_CHANGES_SELECTOR,
118 typename PARAM_ESTIMATOR >
135 #ifndef GUM_NO_INLINE 136 # include <agrum/BN/learning/localSearchWithTabuList_inl.h> 140 #include <agrum/BN/learning/localSearchWithTabuList_tpl.h> LocalSearchWithTabuList()
default constructor
INLINE void emplace(Args &&... args)
LocalSearchWithTabuList & operator=(LocalSearchWithTabuList &&from)
move operator
LocalSearchWithTabuList & operator=(const LocalSearchWithTabuList &from)
copy operator
Size _MaxNbDecreasing_
the max number of changes decreasing the score that we allow to apply
virtual ~LocalSearchWithTabuList()
destructor
LocalSearchWithTabuList(LocalSearchWithTabuList &&from)
move constructor
LocalSearchWithTabuList(const LocalSearchWithTabuList &from)
copy constructor
ApproximationScheme & approximationScheme()
returns the approximation policy of the learning algorithm
BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG())
learns the structure and the parameters of a BN
The local search with tabu list learning algorithm (for directed graphs)
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
Database(const std::string &filename, const BayesNet< GUM_SCALAR > &bn, const std::vector< std::string > &missing_symbols)
void setMaxNbDecreasingChanges(Size nb)
set the max number of changes decreasing the score that we allow to apply