aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
K2.h
Go to the documentation of this file.
1 /**
2  *
3  * Copyright (c) 2005-2021 by Pierre-Henri WUILLEMIN(@LIP6) & Christophe GONZALES(@AMU)
4  * info_at_agrum_dot_org
5  *
6  * This library is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU Lesser General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public License
17  * along with this library. If not, see <http://www.gnu.org/licenses/>.
18  *
19  */
20 
21 
22 /** @file
23  * @brief The K2 algorithm
24  *
25  * @author Christophe GONZALES(@AMU) and Pierre-Henri WUILLEMIN(@LIP6)
26  */
27 #ifndef GUM_LEARNING_K2_H
28 #define GUM_LEARNING_K2_H
29 
30 #include <string>
31 #include <vector>
32 
33 #include <agrum/BN/BayesNet.h>
34 #include <agrum/tools/core/sequence.h>
35 #include <agrum/tools/graphs/DAG.h>
36 #include <agrum/BN/learning/greedyHillClimbing.h>
37 
38 namespace gum {
39 
40  namespace learning {
41 
42  /** @class K2
43  * @brief The K2 algorithm
44  * @ingroup learning_group
45  */
46  class K2: private GreedyHillClimbing {
47  public:
48  // ##########################################################################
49  /// @name Constructors / Destructors
50  // ##########################################################################
51  /// @{
52 
53  /// default constructor
54  K2();
55 
56  /// copy constructor
57  K2(const K2& from);
58 
59  /// move constructor
60  K2(K2&& from);
61 
62  /// destructor
63  ~K2();
64 
65  /// @}
66 
67  // ##########################################################################
68  /// @name Operators
69  // ##########################################################################
70  /// @{
71 
72  /// copy operator
73  K2& operator=(const K2& from);
74 
75  /// move operator
76  K2& operator=(K2&& from);
77 
78  /// @}
79 
80  // ##########################################################################
81  /// @name Accessors / Modifiers
82  // ##########################################################################
83  /// @{
84 
85  /// returns the approximation policy of the learning algorithm
87 
88  /// sets the order on the variables
89  void setOrder(const Sequence< NodeId >& order);
90 
91  /// sets the order on the variables
92  void setOrder(const std::vector< NodeId >& order);
93 
94  /// returns the current order
95  const Sequence< NodeId >& order() const noexcept;
96 
97  /// learns the structure of a Bayes net
98  /**
99  * @param selector A selector class that computes the best changes that
100  * can be applied and that enables the user to get them very easily.
101  * Typically, the selector is a GraphChangesSelector4DiGraph<SCORE,
102  * STRUCT_CONSTRAINT, GRAPH_CHANGES_GENERATOR>.
103  * @param initial_dag the DAG we start from for our learning */
104  template < typename GRAPH_CHANGES_SELECTOR >
106 
107  /// learns the structure and the parameters of a BN
108  template < typename GUM_SCALAR, typename GRAPH_CHANGES_SELECTOR, typename PARAM_ESTIMATOR >
111  DAG initial_dag = DAG());
112 
113  private:
114  /// the order on the variable used for learning
116 
117  /** @brief checks that the order passed to K2 is coherent with the
118  * variables
119  * as specified by their modalities */
120  void _checkOrder_(const std::vector< Size >& modal);
121  /// @}
122  };
123 
124  } /* namespace learning */
125 
126 } /* namespace gum */
127 
128 /// include the inlined functions if necessary
129 #ifndef GUM_NO_INLINE
130 # include <agrum/BN/learning/K2_inl.h>
131 #endif /* GUM_NO_INLINE */
132 
133 /// always include templated methods
134 #include <agrum/BN/learning/K2_tpl.h>
135 
136 #endif /* GUM_LEARNING_K2_H */
ApproximationScheme & approximationScheme()
returns the approximation policy of the learning algorithm
INLINE void emplace(Args &&... args)
Definition: set_tpl.h:643
Sequence< NodeId > _order_
the order on the variable used for learning
Definition: K2.h:115
void _checkOrder_(const std::vector< Size > &modal)
checks that the order passed to K2 is coherent with the variables as specified by their modalities ...
K2(const K2 &from)
copy constructor
const Sequence< NodeId > & order() const noexcept
returns the current order
void setOrder(const std::vector< NodeId > &order)
sets the order on the variables
K2(K2 &&from)
move constructor
K2 & operator=(const K2 &from)
copy operator
K2()
default constructor
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
Definition: K2_tpl.h:40
The K2 algorithm.
Definition: K2.h:46
Database(const std::string &filename, const BayesNet< GUM_SCALAR > &bn, const std::vector< std::string > &missing_symbols)
K2 & operator=(K2 &&from)
move operator
~K2()
destructor
BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG())
learns the structure and the parameters of a BN
Definition: K2_tpl.h:60