aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
weightedSampling.h
Go to the documentation of this file.
1 /**
2  *
3  * Copyright (c) 2005-2021 by Pierre-Henri WUILLEMIN(@LIP6) & Christophe GONZALES(@AMU)
4  * info_at_agrum_dot_org
5  *
6  * This library is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU Lesser General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public License
17  * along with this library. If not, see <http://www.gnu.org/licenses/>.
18  *
19  */
20 
21 
22 /**
23  * @file
24  * @brief This file contains Weighted sampling class definition.
25  *
26  * @author Paul ALAM & Pierre-Henri WUILLEMIN(@LIP6)
27  */
28 
29 
30 #ifndef GUM_WEIGHTED_INFERENCE_H
31 #define GUM_WEIGHTED_INFERENCE_H
32 
33 #include <agrum/BN/inference/tools/samplingInference.h>
34 
35 namespace gum {
36 
37  /**
38  * @class WeightedInference weightedInference.h
39  *<agrum/BN/inference/weightedInference.h>
40  * @brief class for making Weighted sampling inference in Bayesian networks.
41  * @ingroup bn_approximation
42  *
43  * This class overrides pure function declared in the inherited class
44  *ApproximateInference.
45  * It defines the way Weighted sampling draws a sample.
46  *
47  */
48 
49  template < typename GUM_SCALAR >
51  public:
52  /**
53  * Default constructor
54  */
55  explicit WeightedSampling(const IBayesNet< GUM_SCALAR >* bn);
56 
57  /**
58  * Destructor
59  */
61 
62  protected:
63  /// draws a defined number of samples without updating the estimators
64  Instantiation burnIn_() override;
65 
66  /// draws a sample according to Weighted sampling
67  /**
68  * @param w the weight of sample being generated
69  * @param prev the previous sample generated
70  * @param bn the Bayesian network containing the evidence
71  * @param hardEvNodes hard evidence nodes
72  * @param hardEv hard evidences values
73  *
74  * Generates a new sample in topological order. Each sample has a weight bias.
75  * The sample weight is the product of each node's weight.
76  *
77  */
79  };
80 
81 
82 #ifndef GUM_NO_EXTERN_TEMPLATE_CLASS
83  extern template class WeightedSampling< double >;
84 #endif
85 } // namespace gum
86 
87 #include <agrum/BN/inference/weightedSampling_tpl.h>
88 
89 #endif
WeightedSampling(const IBayesNet< GUM_SCALAR > *bn)
Default constructor.
~WeightedSampling() override
Destructor.
Instantiation burnIn_() override
draws a defined number of samples without updating the estimators
INLINE void emplace(Args &&... args)
Definition: set_tpl.h:643
Instantiation draw_(GUM_SCALAR *w, Instantiation prev) override
draws a sample according to Weighted sampling