aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
gum::prm::ClassBayesNet< GUM_SCALAR > Class Template Reference

This class decorates a gum::prm::Class<GUM_SCALAR> has an IBaseBayesNet. More...

#include <agrum/PRM/classBayesNet.h>

+ Inheritance diagram for gum::prm::ClassBayesNet< GUM_SCALAR >:
+ Collaboration diagram for gum::prm::ClassBayesNet< GUM_SCALAR >:

Public Member Functions

bool operator== (const IBayesNet< GUM_SCALAR > &from) const
 This operator compares 2 BNs ! More...
 
bool operator!= (const IBayesNet< GUM_SCALAR > &from) const
 
Size dim () const
 Returns the dimension (the number of free parameters) in this bayes net. More...
 
Size maxVarDomainSize () const
 
GUM_SCALAR minParam () const
 
GUM_SCALAR maxParam () const
 
GUM_SCALAR minNonZeroParam () const
 
GUM_SCALAR maxNonOneParam () const
 
std::string toString () const
 
NodeSet minimalCondSet (NodeId target, const NodeSet &soids) const
 
NodeSet minimalCondSet (const NodeSet &targets, const NodeSet &soids) const
 
bool hasSameStructure (const DAGmodel &other)
 
double log10DomainSize () const
 
Constructors & destructor.
 ClassBayesNet (const PRMClass< GUM_SCALAR > &c)
 Default constructor. More...
 
 ClassBayesNet (const ClassBayesNet< GUM_SCALAR > &from)
 Copy constructor. More...
 
ClassBayesNet< GUM_SCALAR > & operator= (const ClassBayesNet< GUM_SCALAR > &from)
 Copy operator. More...
 
virtual ~ClassBayesNet ()
 Destructor. More...
 
Variable manipulation methods.
virtual const Potential< GUM_SCALAR > & cpt (NodeId varId) const
 Returns the CPT of a node in this ClassBayesNet<GUM_SCALAR>. More...
 
virtual const VariableNodeMapvariableNodeMap () const
 See gum::IBaseBayesNet::variableNodeMap(). More...
 
virtual const DiscreteVariablevariable (NodeId id) const
 See gum::IBaseBayesNet::variable(). More...
 
virtual NodeId nodeId (const DiscreteVariable &var) const
 See gum::IBaseBayesNet::nodeId(). More...
 
virtual NodeId idFromName (const std::string &name) const
 See gum::IBaseBayesNet::idFromName(). More...
 
virtual const DiscreteVariablevariableFromName (const std::string &name) const
 See gum::IBaseBayesNet::variableFromName(). More...
 
const NodeProperty< Size > & modalities () const
 See gum::IBaseBayesNet::modalities(). More...
 
Graphical methods
virtual std::string toDot () const
 
Joint Probability manipulation methods
GUM_SCALAR jointProbability (const Instantiation &i) const
 Compute a parameter of the joint probability for the BN (given an instantiation of the vars) More...
 
GUM_SCALAR log2JointProbability (const Instantiation &i) const
 Compute a parameter of the log joint probability for the BN (given an instantiation of the vars) More...
 
Variable manipulation methods.
const DAGdag () const
 Returns a constant reference to the dag of this Bayes Net. More...
 
virtual Size size () const final
 Returns the number of variables in this Directed Graphical Model. More...
 
Size sizeArcs () const
 Returns the number of arcs in this Directed Graphical Model. More...
 
const NodeGraphPartnodes () const final
 Returns a constant reference to the dag of this Bayes Net. More...
 
bool exists (NodeId node) const final
 Return true if this node exists in this graphical model. More...
 
Variable manipulation methods.
bool exists (const std::string &name) const
 Return true if this graphical model is empty. More...
 
virtual bool empty () const
 Return true if this graphical model is empty. More...
 
std::vector< std::string > names (const std::vector< NodeId > &ids) const
 transform a vector of NodeId in a vector of names More...
 
std::vector< std::string > names (const NodeSet &ids) const
 transform a NodeSet in a vector of names More...
 
std::vector< NodeIdids (const std::vector< std::string > &names) const
 transform a vector of names into a vector of nodeId More...
 
NodeSet nodeset (const std::vector< std::string > &names) const
 transform a vector of names into a NodeSet More...
 
Instantiation completeInstantiation () const
 Get an instantiation over all the variables of the model. More...
 
Arc manipulation methods.
const ArcSetarcs () const
 return true if the arc tail->head exists in the DAGmodel More...
 
bool existsArc (const NodeId tail, const NodeId head) const
 return true if the arc tail->head exists in the DAGmodel More...
 
bool existsArc (const std::string &nametail, const std::string &namehead) const
 return true if the arc tail->head exists in the DAGmodel More...
 
const NodeSetparents (const NodeId id) const
 returns the set of nodes with arc ingoing to a given node More...
 
const NodeSetparents (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet parents (const NodeSet &ids) const
 returns the parents of a set of nodes More...
 
NodeSet parents (const std::vector< std::string > &names) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet family (const NodeId id) const
 returns the parents of a node and the node More...
 
NodeSet family (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
const NodeSetchildren (const NodeId id) const
 returns the set of nodes with arc outgoing from a given node More...
 
const NodeSetchildren (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet children (const NodeSet &ids) const
 returns the children of a set of nodes More...
 
NodeSet children (const std::vector< std::string > &names) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet descendants (const NodeId id) const
 returns the set of nodes with directed path outgoing from a given node More...
 
NodeSet descendants (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
NodeSet ancestors (const NodeId id) const
 returns the set of nodes with directed path ingoing to a given node More...
 
NodeSet ancestors (const std::string &name) const
 return true if the arc tail->head exists in the DAGmodel More...
 
Graphical methods
UndiGraph moralizedAncestralGraph (const NodeSet &nodes) const
 build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes More...
 
UndiGraph moralizedAncestralGraph (const std::vector< std::string > &nodenames) const
 build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes More...
 
bool isIndependent (NodeId X, NodeId Y, const NodeSet &Z) const final
 check if node X and node Y are independent given nodes Z More...
 
bool isIndependent (const NodeSet &X, const NodeSet &Y, const NodeSet &Z) const final
 check if nodes X and nodes Y are independent given nodes Z More...
 
bool isIndependent (const std::string &Xname, const std::string &Yname, const std::vector< std::string > &Znames) const
 build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes More...
 
bool isIndependent (const std::vector< std::string > &Xnames, const std::vector< std::string > &Ynames, const std::vector< std::string > &Znames) const
 build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes More...
 
const UndiGraphmoralGraph (bool clear=true) const
 The node's id are coherent with the variables and nodes of the topology. More...
 
const Sequence< NodeId > & topologicalOrder (bool clear=true) const
 The topological order stays the same as long as no variable or arcs are added or erased src the topology. More...
 
Getter and setters
const std::string & property (const std::string &name) const
 Return the value of the property name of this GraphicalModel. More...
 
const std::string & propertyWithDefault (const std::string &name, const std::string &byDefault) const
 Return the value of the property name of this GraphicalModel. More...
 
void setProperty (const std::string &name, const std::string &value)
 Add or change a property of this GraphicalModel. More...
 

Protected Attributes

DAG dag_
 The DAG of this Directed Graphical Model. More...
 

Detailed Description

template<typename GUM_SCALAR>
class gum::prm::ClassBayesNet< GUM_SCALAR >

This class decorates a gum::prm::Class<GUM_SCALAR> has an IBaseBayesNet.

Template Parameters
GUM_SCALARThe type of scalar to use.

This class filters PRMAttribute and PRMAggregate in a way it can be interpreted as a IBayesNet.

SlotChains and PRMReferenceSlot are not represented.

Remember that a ClassBayesNet<GUM_SCALAR> does not contain input nodes parents and output nodes children. Thus you should be careful when using one of the BayesNetInference over a ClassBayesNet<GUM_SCALAR> since some variables are missing in the DAG but not in the nodes CPT.

Definition at line 59 of file classBayesNet.h.

Constructor & Destructor Documentation

◆ ClassBayesNet() [1/2]

template<typename GUM_SCALAR >
INLINE gum::prm::ClassBayesNet< GUM_SCALAR >::ClassBayesNet ( const PRMClass< GUM_SCALAR > &  c)

Default constructor.

Parameters
cThe Class<GUM_SCALAR> decorated by this ClassBayesNet<GUM_SCALAR>.

Definition at line 60 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

60  :
61  IBayesNet< GUM_SCALAR >(), _class_(&c) {
62  GUM_CONSTRUCTOR(ClassBayesNet);
63  _init_(c);
64  }
void _init_(const PRMClass< GUM_SCALAR > &c)
ClassBayesNet(const PRMClass< GUM_SCALAR > &c)
Default constructor.
const PRMClass< GUM_SCALAR > * _class_
The PRMClassElementContainer decorated by this.
+ Here is the call graph for this function:

◆ ClassBayesNet() [2/2]

template<typename GUM_SCALAR >
INLINE gum::prm::ClassBayesNet< GUM_SCALAR >::ClassBayesNet ( const ClassBayesNet< GUM_SCALAR > &  from)

Copy constructor.

Definition at line 67 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

67  :
68  IBayesNet< GUM_SCALAR >(from), _class_(from._class_) {
69  GUM_CONS_CPY(ClassBayesNet);
70  }
ClassBayesNet(const PRMClass< GUM_SCALAR > &c)
Default constructor.
const PRMClass< GUM_SCALAR > * _class_
The PRMClassElementContainer decorated by this.
+ Here is the call graph for this function:

◆ ~ClassBayesNet()

template<typename GUM_SCALAR >
INLINE gum::prm::ClassBayesNet< GUM_SCALAR >::~ClassBayesNet ( )
virtual

Destructor.

Definition at line 73 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

73  {
74  GUM_DESTRUCTOR(ClassBayesNet);
75  }
ClassBayesNet(const PRMClass< GUM_SCALAR > &c)
Default constructor.
+ Here is the call graph for this function:

Member Function Documentation

◆ _get_() [1/2]

template<typename GUM_SCALAR >
INLINE const PRMClassElement< GUM_SCALAR > & gum::prm::ClassBayesNet< GUM_SCALAR >::_get_ ( NodeId  id) const
private

Private getter with type checking in case the id is not a formal PRMAttribute.

Exceptions
NotFoundRaised if id is not a formal attribute.

Definition at line 122 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

122  {
123  if (this->dag_.exists(id)) {
124  return _class_->get(id);
125  } else {
126  GUM_ERROR(NotFound, "no element found with that id.")
127  }
128  }
bool exists(const NodeId id) const
alias for existsNode
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
const PRMClass< GUM_SCALAR > * _class_
The PRMClassElementContainer decorated by this.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:51
+ Here is the call graph for this function:

◆ _get_() [2/2]

template<typename GUM_SCALAR >
INLINE const PRMClassElement< GUM_SCALAR > & gum::prm::ClassBayesNet< GUM_SCALAR >::_get_ ( const std::string &  name) const
private

Private getter with type checking in case the id is not a formal PRMAttribute.

Exceptions
NotFoundRaised if id is not a formal attribute.

Definition at line 132 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

132  {
133  try {
134  return _class_->get(name);
135  } catch (NotFound&) { GUM_ERROR(NotFound, "no element found with that id.") }
136  }
const PRMClass< GUM_SCALAR > * _class_
The PRMClassElementContainer decorated by this.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:51
+ Here is the call graph for this function:

◆ _init_()

template<typename GUM_SCALAR >
void gum::prm::ClassBayesNet< GUM_SCALAR >::_init_ ( const PRMClass< GUM_SCALAR > &  c)
private

Definition at line 35 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

35  {
36  for (const auto node: c.containerDag().nodes()) {
37  try {
38  // Adding the attribute
41  const PRMClassElement< GUM_SCALAR >& elt = c.get(node);
42  this->dag_.addNodeWithId(elt.id());
43  this->_varNodeMap_.insert(&(elt.type().variable()), &elt);
44  }
45  } catch (NotFound&) {
46  // Not an attribute
47  }
48  }
49 
50  for (const auto& arc: c.containerDag().arcs()) {
51  try {
52  this->dag_.addArc(arc.tail(), arc.head());
53  } catch (InvalidNode&) {
54  // Not added means not an attribute
55  }
56  }
57  }
virtual void addNodeWithId(const NodeId id)
try to insert a node with the given id
HashTable< const DiscreteVariable *, const PRMClassElement< GUM_SCALAR > *> _varNodeMap_
Mapping between DiscreteVariable and their NodeId.
void addArc(NodeId tail, NodeId head) final
insert a new arc into the directed graph
Definition: DAG_inl.h:42
static INLINE bool isAttribute(const PRMClassElement< GUM_SCALAR > &elt)
Returns true if obj_ptr is of type PRMAttribute.
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
static INLINE bool isAggregate(const PRMClassElement< GUM_SCALAR > &elt)
Return true if obj is of type PRMAggregate.
+ Here is the call graph for this function:

◆ ancestors() [1/2]

INLINE NodeSet gum::DAGmodel::ancestors ( const NodeId  id) const
inherited

returns the set of nodes with directed path ingoing to a given node

Note that the set of nodes returned may be empty if no path within the ArcGraphPart is ingoing to the given node.

Parameters
idthe node which is the head of a directed path with the returned nodes
namethe name of the node which is the head of a directed path with the returned nodes

Definition at line 96 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

96 { return dag().ancestors(id); }
NodeSet ancestors(NodeId id) const
returns the set of nodes with directed path ingoing to a given node
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ ancestors() [2/2]

INLINE NodeSet gum::DAGmodel::ancestors ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 98 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

98  {
99  return ancestors(idFromName(name));
100  }
NodeSet ancestors(const NodeId id) const
returns the set of nodes with directed path ingoing to a given node
Definition: DAGmodel_inl.h:96
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ arcs()

INLINE const ArcSet & gum::DAGmodel::arcs ( ) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 43 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

43 { return dag_.arcs(); }
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
const ArcSet & arcs() const
returns the set of arcs stored within the ArcGraphPart
+ Here is the call graph for this function:

◆ children() [1/4]

INLINE const NodeSet & gum::DAGmodel::children ( const NodeId  id) const
inherited

returns the set of nodes with arc outgoing from a given node

Note that the set of nodes returned may be empty if no node is outgoing from the given node.

Parameters
idthe node which is the tail of an arc with the returned nodes
namethe name of the node which is the tail of an arc with the returned nodes

Definition at line 65 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

65 { return dag_.children(id); }
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ children() [2/4]

INLINE const NodeSet & gum::DAGmodel::children ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 66 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

66  {
67  return dag_.children(idFromName(name));
68  }
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ children() [3/4]

INLINE NodeSet gum::DAGmodel::children ( const NodeSet ids) const
inherited

returns the children of a set of nodes

Definition at line 70 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

70 { return dag_.children(ids); }
std::vector< NodeId > ids(const std::vector< std::string > &names) const
transform a vector of names into a vector of nodeId
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ children() [4/4]

INLINE NodeSet gum::DAGmodel::children ( const std::vector< std::string > &  names) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 72 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

72  {
73  return children(nodeset(names));
74  }
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
Definition: DAGmodel_inl.h:65
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
+ Here is the call graph for this function:

◆ completeInstantiation()

INLINE Instantiation gum::GraphicalModel::completeInstantiation ( ) const
inherited

Get an instantiation over all the variables of the model.

Definition at line 84 of file graphicalModel_inl.h.

84  {
85  Instantiation I;
86 
87  for (const auto node: nodes())
88  I << variable(node);
89 
90  return I;
91  }
virtual const NodeGraphPart & nodes() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.

◆ cpt()

template<typename GUM_SCALAR >
INLINE const Potential< GUM_SCALAR > & gum::prm::ClassBayesNet< GUM_SCALAR >::cpt ( NodeId  varId) const
virtual

Returns the CPT of a node in this ClassBayesNet<GUM_SCALAR>.

If the node is an PRMAggregate, this will raise an OperationNotAllowed since PRMAggregate's CPT are define at instantiation only.

Parameters
varIda variable id.
Returns
the Potential of varId.
Exceptions
NotFoundraised if varId does not match any variable in this IBayesNet.
OperationNotAllowedraised if varId is an PRMAggregate.

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 90 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

90  {
91  return _get_(varId).cpf();
92  }
const PRMClassElement< GUM_SCALAR > & _get_(NodeId id) const
Private getter with type checking in case the id is not a formal PRMAttribute.
+ Here is the call graph for this function:

◆ dag()

INLINE const DAG & gum::DAGmodel::dag ( ) const
inherited

Returns a constant reference to the dag of this Bayes Net.

Definition at line 35 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

35 { return dag_; }
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ descendants() [1/2]

INLINE NodeSet gum::DAGmodel::descendants ( const NodeId  id) const
inherited

returns the set of nodes with directed path outgoing from a given node

Note that the set of nodes returned may be empty if no path within the ArcGraphPart is outgoing from the given node.

Parameters
idthe node which is the tail of a directed path with the returned nodes
namethe name of the node which is the tail of a directed path with the returned nodes

Definition at line 90 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

90 { return dag().descendants(id); }
NodeSet descendants(NodeId id) const
returns the set of nodes with directed path outgoing from a given node
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ descendants() [2/2]

INLINE NodeSet gum::DAGmodel::descendants ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 92 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

92  {
93  return descendants(idFromName(name));
94  }
NodeSet descendants(const NodeId id) const
returns the set of nodes with directed path outgoing from a given node
Definition: DAGmodel_inl.h:90
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ dim()

template<typename GUM_SCALAR >
Size gum::IBayesNet< GUM_SCALAR >::dim ( ) const
inherited

Returns the dimension (the number of free parameters) in this bayes net.

\( dim(G)=\sum_{i \in nodes} ((r_i-1)\cdot q_i) \) where \( r_i \) is the number of instantiations of node \( i \) and \( q_i \) is the number of instantiations of its parents.

Definition at line 78 of file IBayesNet_tpl.h.

78  {
79  Size dim = 0;
80 
81  for (auto node: nodes()) {
82  Size q = 1;
83 
84  for (auto parent: parents(node))
85  q *= variable(parent).domainSize();
86 
87  dim += (variable(node).domainSize() - 1) * q;
88  }
89 
90  return dim;
91  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:53
virtual Size domainSize() const =0
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
Size dim() const
Returns the dimension (the number of free parameters) in this bayes net.
Definition: IBayesNet_tpl.h:78
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:47

◆ empty()

INLINE bool gum::GraphicalModel::empty ( ) const
virtualinherited

Return true if this graphical model is empty.

Definition at line 94 of file graphicalModel_inl.h.

94 { return size() == 0; }
virtual Size size() const =0
Returns the number of variables in this Directed Graphical Model.

◆ exists() [1/2]

INLINE bool gum::DAGmodel::exists ( NodeId  node) const
finalvirtualinherited

Return true if this node exists in this graphical model.

Implements gum::GraphicalModel.

Definition at line 82 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

82 { return dag_.exists(node); }
bool exists(const NodeId id) const
alias for existsNode
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ exists() [2/2]

bool gum::GraphicalModel::exists ( const std::string &  name) const
inlineinherited

Return true if this graphical model is empty.

Definition at line 112 of file graphicalModel.h.

112 { return exists(idFromName(name)); };
virtual bool exists(NodeId node) const =0
Return true if this node exists in this graphical model.
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.

◆ existsArc() [1/2]

INLINE bool gum::DAGmodel::existsArc ( const NodeId  tail,
const NodeId  head 
) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 45 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

45  {
46  return dag_.existsArc(tail, head);
47  }
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
bool existsArc(const Arc &arc) const
indicates whether a given arc exists
+ Here is the call graph for this function:

◆ existsArc() [2/2]

INLINE bool gum::DAGmodel::existsArc ( const std::string &  nametail,
const std::string &  namehead 
) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 49 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

49  {
50  return existsArc(idFromName(nametail), idFromName(namehead));
51  }
bool existsArc(const NodeId tail, const NodeId head) const
return true if the arc tail->head exists in the DAGmodel
Definition: DAGmodel_inl.h:45
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ family() [1/2]

INLINE NodeSet gum::DAGmodel::family ( const NodeId  id) const
inherited

returns the parents of a node and the node

Note that the set of nodes returned may be empty if no arc within the ArcGraphPart is ingoing into the given node.

Parameters
idthe node which is the head of an arc with the returned nodes
namethe name of the node the node which is the head of an arc with the returned nodes

Definition at line 59 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

59 { return dag_.family(id); }
NodeSet family(NodeId id) const
returns the set of nodes which consists in the node and its parents
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ family() [2/2]

INLINE NodeSet gum::DAGmodel::family ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 61 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

61  {
62  return dag_.family(idFromName(name));
63  }
NodeSet family(NodeId id) const
returns the set of nodes which consists in the node and its parents
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ hasSameStructure()

bool gum::DAGmodel::hasSameStructure ( const DAGmodel other)
inherited
Returns
true if all the named node are the same and all the named arcs are the same

Definition at line 69 of file DAGmodel.cpp.

References gum::Set< Key, Alloc >::emplace().

69  {
70  if (this == &other) return true;
71 
72  if (size() != other.size()) return false;
73 
74  if (sizeArcs() != other.sizeArcs()) return false;
75 
76  for (const auto& nid: nodes()) {
77  try {
78  other.idFromName(variable(nid).name());
79  } catch (NotFound) { return false; }
80  }
81 
82  for (const auto& arc: arcs()) {
83  if (!other.arcs().exists(Arc(other.idFromName(variable(arc.tail()).name()),
84  other.idFromName(variable(arc.head()).name()))))
85  return false;
86  }
87 
88  return true;
89  }
const ArcSet & arcs() const
return true if the arc tail->head exists in the DAGmodel
Definition: DAGmodel_inl.h:43
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
Size sizeArcs() const
Returns the number of arcs in this Directed Graphical Model.
Definition: DAGmodel_inl.h:41
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:38
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
+ Here is the call graph for this function:

◆ idFromName()

template<typename GUM_SCALAR >
INLINE NodeId gum::prm::ClassBayesNet< GUM_SCALAR >::idFromName ( const std::string &  name) const
virtual

See gum::IBaseBayesNet::idFromName().

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 110 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

110  {
111  return _get_(name).id();
112  }
const PRMClassElement< GUM_SCALAR > & _get_(NodeId id) const
Private getter with type checking in case the id is not a formal PRMAttribute.
+ Here is the call graph for this function:

◆ ids()

INLINE std::vector< NodeId > gum::GraphicalModel::ids ( const std::vector< std::string > &  names) const
inherited

transform a vector of names into a vector of nodeId

Returns
the vector of names

Definition at line 117 of file graphicalModel_inl.h.

117  {
118  std::vector< NodeId > res;
119  const VariableNodeMap& v = variableNodeMap();
120  std::transform(names.cbegin(),
121  names.cend(),
122  std::back_inserter(res),
123  [v](const std::string& n) { return v.idFromName(n); });
124  return res;
125  }
virtual const VariableNodeMap & variableNodeMap() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.

◆ isIndependent() [1/4]

INLINE bool gum::DAGmodel::isIndependent ( NodeId  X,
NodeId  Y,
const NodeSet Z 
) const
finalvirtualinherited

check if node X and node Y are independent given nodes Z

Implements gum::GraphicalModel.

Definition at line 113 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

113  {
114  return dag().dSeparation(X, Y, Z);
115  }
bool dSeparation(NodeId X, NodeId Y, const NodeSet &Z) const
check if node X and node Y are independent given nodes Z (in the sense of d-separation) ...
Definition: DAG.cpp:105
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ isIndependent() [2/4]

INLINE bool gum::DAGmodel::isIndependent ( const NodeSet X,
const NodeSet Y,
const NodeSet Z 
) const
finalvirtualinherited

check if nodes X and nodes Y are independent given nodes Z

Implements gum::GraphicalModel.

Definition at line 117 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

117  {
118  return dag().dSeparation(X, Y, Z);
119  }
bool dSeparation(NodeId X, NodeId Y, const NodeSet &Z) const
check if node X and node Y are independent given nodes Z (in the sense of d-separation) ...
Definition: DAG.cpp:105
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ isIndependent() [3/4]

bool gum::DAGmodel::isIndependent ( const std::string &  Xname,
const std::string &  Yname,
const std::vector< std::string > &  Znames 
) const
inlineinherited

build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes

Parameters
nodesthe set of nodeId
nodenamesthe vector of names of nodes
Returns
the moralized ancestral graph

Definition at line 185 of file DAGmodel.h.

187  {
188  return isIndependent(idFromName(Xname), idFromName(Yname), nodeset(Znames));
189  };
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
bool isIndependent(NodeId X, NodeId Y, const NodeSet &Z) const final
check if node X and node Y are independent given nodes Z
Definition: DAGmodel_inl.h:113

◆ isIndependent() [4/4]

bool gum::DAGmodel::isIndependent ( const std::vector< std::string > &  Xnames,
const std::vector< std::string > &  Ynames,
const std::vector< std::string > &  Znames 
) const
inlineinherited

build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes

Parameters
nodesthe set of nodeId
nodenamesthe vector of names of nodes
Returns
the moralized ancestral graph

Definition at line 191 of file DAGmodel.h.

193  {
194  return isIndependent(nodeset(Xnames), nodeset(Ynames), nodeset(Znames));
195  };
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
bool isIndependent(NodeId X, NodeId Y, const NodeSet &Z) const final
check if node X and node Y are independent given nodes Z
Definition: DAGmodel_inl.h:113

◆ jointProbability()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::jointProbability ( const Instantiation i) const
inherited

Compute a parameter of the joint probability for the BN (given an instantiation of the vars)

Warning
a variable not present in the instantiation is assumed to be instantiated to 0.

Definition at line 207 of file IBayesNet_tpl.h.

207  {
208  auto value = (GUM_SCALAR)1.0;
209 
210  GUM_SCALAR tmp;
211 
212  for (auto node: nodes()) {
213  if ((tmp = cpt(node)[i]) == (GUM_SCALAR)0) { return (GUM_SCALAR)0; }
214 
215  value *= tmp;
216  }
217 
218  return value;
219  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ log10DomainSize()

INLINE double gum::GraphicalModel::log10DomainSize ( ) const
inherited

Definition at line 73 of file graphicalModel_inl.h.

73  {
74  double dSize = 0.0;
75 
76  for (const auto node: nodes()) {
77  dSize += std::log10(variable(node).domainSize());
78  }
79 
80  return dSize;
81  }
virtual const NodeGraphPart & nodes() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.

◆ log2JointProbability()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::log2JointProbability ( const Instantiation i) const
inherited

Compute a parameter of the log joint probability for the BN (given an instantiation of the vars)

Compute a parameter of the joint probability for the BN (given an instantiation of the vars)

Warning
a variable not present in the instantiation is assumed to be instantiated to 0.

Definition at line 225 of file IBayesNet_tpl.h.

225  {
226  auto value = (GUM_SCALAR)0.0;
227 
228  GUM_SCALAR tmp;
229 
230  for (auto node: nodes()) {
231  if ((tmp = cpt(node)[i]) == (GUM_SCALAR)0) {
232  return (GUM_SCALAR)(-std::numeric_limits< double >::infinity());
233  }
234 
235  value += std::log2(cpt(node)[i]);
236  }
237 
238  return value;
239  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
Potential< GUM_SCALAR > log2(const Potential< GUM_SCALAR > &arg)
Definition: potential.h:590

◆ maxNonOneParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::maxNonOneParam ( ) const
inherited
Returns
the biggest value (not equal to 1) in the CPTs of *this
Warning
can return one if no other value in the CPTs than one....

Definition at line 134 of file IBayesNet_tpl.h.

134  {
135  GUM_SCALAR res = 0.0;
136  for (auto node: nodes()) {
137  auto v = cpt(node).maxNonOne();
138  if (v > res) { res = v; }
139  }
140  return res;
141  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ maxParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::maxParam ( ) const
inherited
Returns
the biggest value in the CPTs of *this

Definition at line 114 of file IBayesNet_tpl.h.

114  {
115  GUM_SCALAR res = 1.0;
116  for (auto node: nodes()) {
117  auto v = cpt(node).max();
118  if (v > res) { res = v; }
119  }
120  return res;
121  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ maxVarDomainSize()

template<typename GUM_SCALAR >
Size gum::IBayesNet< GUM_SCALAR >::maxVarDomainSize ( ) const
inherited
Returns
the biggest domainSize among the variables of *this

Definition at line 94 of file IBayesNet_tpl.h.

94  {
95  Size res = 0;
96  for (auto node: nodes()) {
97  auto v = variable(node).domainSize();
98  if (v > res) { res = v; }
99  }
100  return res;
101  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
virtual Size domainSize() const =0
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:47

◆ minimalCondSet() [1/2]

template<typename GUM_SCALAR >
NodeSet gum::IBayesNet< GUM_SCALAR >::minimalCondSet ( NodeId  target,
const NodeSet soids 
) const
inherited

Definition at line 332 of file IBayesNet_tpl.h.

332  {
333  if (soids.contains(target)) return NodeSet({target});
334 
335  NodeSet res;
336  NodeSet alreadyVisitedUp;
337  NodeSet alreadyVisitedDn;
338  alreadyVisitedDn << target;
339  alreadyVisitedUp << target;
340 
341  for (auto fath: dag_.parents(target))
342  _minimalCondSetVisitUp_(fath, soids, res, alreadyVisitedUp, alreadyVisitedDn);
343  for (auto chil: dag_.children(target))
344  _minimalCondSetVisitDn_(chil, soids, res, alreadyVisitedUp, alreadyVisitedDn);
345  return res;
346  }
void _minimalCondSetVisitUp_(NodeId node, const NodeSet &soids, NodeSet &minimal, NodeSet &alreadyVisitedUp, NodeSet &alreadyVisitedDn) const
void _minimalCondSetVisitDn_(NodeId node, const NodeSet &soids, NodeSet &minimal, NodeSet &alreadyVisitedUp, NodeSet &alreadyVisitedDn) const
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
const NodeSet & parents(NodeId id) const
returns the set of nodes with arc ingoing to a given node
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222

◆ minimalCondSet() [2/2]

template<typename GUM_SCALAR >
NodeSet gum::IBayesNet< GUM_SCALAR >::minimalCondSet ( const NodeSet targets,
const NodeSet soids 
) const
inherited

Definition at line 349 of file IBayesNet_tpl.h.

350  {
351  NodeSet res;
352  for (auto node: targets) {
353  res += minimalCondSet(node, soids);
354  }
355  return res;
356  }
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
NodeSet minimalCondSet(NodeId target, const NodeSet &soids) const

◆ minNonZeroParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::minNonZeroParam ( ) const
inherited
Returns
the smallest value (not equal to 0) in the CPTs of *this
Warning
can return 0 if no other value in the CPTs than 0...

Definition at line 124 of file IBayesNet_tpl.h.

124  {
125  GUM_SCALAR res = 1.0;
126  for (auto node: nodes()) {
127  auto v = cpt(node).minNonZero();
128  if (v < res) { res = v; }
129  }
130  return res;
131  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ minParam()

template<typename GUM_SCALAR >
GUM_SCALAR gum::IBayesNet< GUM_SCALAR >::minParam ( ) const
inherited
Returns
the smallest value in the CPTs of *this

Definition at line 104 of file IBayesNet_tpl.h.

104  {
105  GUM_SCALAR res = 1.0;
106  for (auto node: nodes()) {
107  auto v = cpt(node).min();
108  if (v < res) { res = v; }
109  }
110  return res;
111  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.

◆ modalities()

template<typename GUM_SCALAR >
INLINE const NodeProperty< Size > & gum::prm::ClassBayesNet< GUM_SCALAR >::modalities ( ) const

See gum::IBaseBayesNet::modalities().

Definition at line 139 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

139  {
140  if (_modalities_.empty()) {
141  for (const auto node: this->nodes()) {
142  _modalities_.insert(node, (Size)variable(node).domainSize());
143  }
144  }
145 
146  return _modalities_;
147  }
virtual const DiscreteVariable & variable(NodeId id) const
See gum::IBaseBayesNet::variable().
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
NodeProperty< Size > _modalities_
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:47
+ Here is the call graph for this function:

◆ moralGraph()

const UndiGraph & gum::DAGmodel::moralGraph ( bool  clear = true) const
inherited

The node's id are coherent with the variables and nodes of the topology.

Parameters
clearIf false returns the previously created moral graph.

Definition at line 55 of file DAGmodel.cpp.

References gum::Set< Key, Alloc >::emplace().

55  {
56  if (clear || (_mutableMoralGraph_ == nullptr)) { // we have to call dag().moralGraph()
57  if (_mutableMoralGraph_ == nullptr) {
58  _mutableMoralGraph_ = new UndiGraph();
59  } else {
60  // clear is True , __mutableMoralGraph exists
62  }
64  }
65 
66  return *_mutableMoralGraph_;
67  }
void clear() override
removes all the nodes and edges from the graph
Definition: undiGraph_inl.h:42
UndiGraph moralGraph() const
build a UndiGraph by moralizing the dag
Definition: DAG.cpp:55
UndiGraph * _mutableMoralGraph_
The moral graph of this Directed Graphical Model.
Definition: DAGmodel.h:230
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ moralizedAncestralGraph() [1/2]

INLINE UndiGraph gum::DAGmodel::moralizedAncestralGraph ( const NodeSet nodes) const
inherited

build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes

Parameters
nodesthe set of nodeId
nodenamesthe vector of names of nodes
Returns
the moralized ancestral graph

Definition at line 109 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

109  {
111  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
UndiGraph moralizedAncestralGraph(const NodeSet &nodes) const
build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes
Definition: DAG.cpp:79
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ moralizedAncestralGraph() [2/2]

INLINE UndiGraph gum::DAGmodel::moralizedAncestralGraph ( const std::vector< std::string > &  nodenames) const
inherited

build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes

Parameters
nodesthe set of nodeId
nodenamesthe vector of names of nodes
Returns
the moralized ancestral graph

Definition at line 104 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

104  {
105  return moralizedAncestralGraph(nodeset(nodenames));
106  }
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
UndiGraph moralizedAncestralGraph(const NodeSet &nodes) const
build a UndiGraph by moralizing the Ancestral Graph of a set of Nodes
Definition: DAGmodel_inl.h:109
+ Here is the call graph for this function:

◆ names() [1/2]

INLINE std::vector< std::string > gum::GraphicalModel::names ( const std::vector< NodeId > &  ids) const
inherited

transform a vector of NodeId in a vector of names

Returns
the vector of names

Definition at line 97 of file graphicalModel_inl.h.

97  {
98  std::vector< std::string > res;
99  const VariableNodeMap& v = variableNodeMap();
100  std::transform(ids.cbegin(), ids.cend(), std::back_inserter(res), [v](NodeId n) {
101  return v[n].name();
102  });
103  return res;
104  }
virtual const VariableNodeMap & variableNodeMap() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ names() [2/2]

INLINE std::vector< std::string > gum::GraphicalModel::names ( const NodeSet ids) const
inherited

transform a NodeSet in a vector of names

Returns
the vector of names

Definition at line 107 of file graphicalModel_inl.h.

107  {
108  const VariableNodeMap& v = variableNodeMap();
109  std::vector< std::string > res;
110  for (auto n: ids) {
111  res.push_back(v.name(n));
112  }
113  return res;
114  }
std::vector< NodeId > ids(const std::vector< std::string > &names) const
transform a vector of names into a vector of nodeId
virtual const VariableNodeMap & variableNodeMap() const =0
Returns a constant reference to the VariableNodeMap of this Graphical Model.

◆ nodeId()

template<typename GUM_SCALAR >
INLINE NodeId gum::prm::ClassBayesNet< GUM_SCALAR >::nodeId ( const DiscreteVariable var) const
virtual

See gum::IBaseBayesNet::nodeId().

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 105 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

105  {
106  return _varNodeMap_[&var]->id();
107  }
HashTable< const DiscreteVariable *, const PRMClassElement< GUM_SCALAR > *> _varNodeMap_
Mapping between DiscreteVariable and their NodeId.
+ Here is the call graph for this function:

◆ nodes()

INLINE const NodeGraphPart & gum::DAGmodel::nodes ( ) const
finalvirtualinherited

Returns a constant reference to the dag of this Bayes Net.

Implements gum::GraphicalModel.

Definition at line 84 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

84 { return (NodeGraphPart&)dag_; }
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ nodeset()

NodeSet gum::GraphicalModel::nodeset ( const std::vector< std::string > &  names) const
inherited

transform a vector of names into a NodeSet

Returns
NodeSet

Definition at line 58 of file graphicalModel.cpp.

References gum::Set< Key, Alloc >::emplace().

58  {
59  NodeSet res;
60  for (const auto& name: names) {
61  res.insert(idFromName(name));
62  }
63  return res;
64  }
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
void insert(const Key &k)
Inserts a new element into the set.
Definition: set_tpl.h:606
+ Here is the call graph for this function:

◆ operator!=()

template<typename GUM_SCALAR>
bool gum::IBayesNet< GUM_SCALAR >::operator!= ( const IBayesNet< GUM_SCALAR > &  from) const
inherited
Returns
Returns false if the src and this are equal.

Definition at line 286 of file IBayesNet_tpl.h.

286  {
287  return !this->operator==(from);
288  }
bool operator==(const IBayesNet< GUM_SCALAR > &from) const
This operator compares 2 BNs !

◆ operator=()

template<typename GUM_SCALAR >
INLINE ClassBayesNet< GUM_SCALAR > & gum::prm::ClassBayesNet< GUM_SCALAR >::operator= ( const ClassBayesNet< GUM_SCALAR > &  from)

Copy operator.

Definition at line 79 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

79  {
80  if (this != &from) {
82 
83  _class_ = from._class_;
84  }
85 
86  return *this;
87  }
IBayesNet< GUM_SCALAR > & operator=(const IBayesNet< GUM_SCALAR > &source)
Copy operator.
Definition: IBayesNet_tpl.h:66
const PRMClass< GUM_SCALAR > * _class_
The PRMClassElementContainer decorated by this.
+ Here is the call graph for this function:

◆ operator==()

template<typename GUM_SCALAR>
bool gum::IBayesNet< GUM_SCALAR >::operator== ( const IBayesNet< GUM_SCALAR > &  from) const
inherited

This operator compares 2 BNs !

Warning
To identify nodes between BNs, it is assumed that they share the same name.
Returns
true if the src and this are equal.

Definition at line 242 of file IBayesNet_tpl.h.

242  {
243  if (size() != from.size()) { return false; }
244 
245  if (sizeArcs() != from.sizeArcs()) { return false; }
246 
247  // alignment of variables between the 2 BNs
248  Bijection< const DiscreteVariable*, const DiscreteVariable* > alignment;
249 
250  for (auto node: nodes()) {
251  try {
252  alignment.insert(&variable(node), &from.variableFromName(variable(node).name()));
253  } catch (NotFound&) {
254  // a name is not found in from
255  return false;
256  }
257  }
258 
259  for (auto node: nodes()) {
260  NodeId fromnode = from.idFromName(variable(node).name());
261 
262  if (cpt(node).nbrDim() != from.cpt(fromnode).nbrDim()) { return false; }
263 
264  if (cpt(node).domainSize() != from.cpt(fromnode).domainSize()) { return false; }
265 
266  Instantiation i(cpt(node));
267  Instantiation j(from.cpt(fromnode));
268 
269  for (i.setFirst(); !i.end(); i.inc()) {
270  for (Idx indice = 0; indice < cpt(node).nbrDim(); ++indice) {
271  const DiscreteVariable* p = &(i.variable(indice));
272  j.chgVal(*(alignment.second(p)), i.val(*p));
273  }
274 
275  if (std::pow(cpt(node).get(i) - from.cpt(fromnode).get(j), (GUM_SCALAR)2)
276  > (GUM_SCALAR)1e-6) {
277  return false;
278  }
279  }
280  }
281 
282  return true;
283  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
Size sizeArcs() const
Returns the number of arcs in this Directed Graphical Model.
Definition: DAGmodel_inl.h:41
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:38
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
virtual const DiscreteVariable & variable(NodeId id) const =0
Returns a constant reference over a variable given it&#39;s node id.
Size NodeId
Type for node ids.
Definition: graphElements.h:97

◆ parents() [1/4]

INLINE const NodeSet & gum::DAGmodel::parents ( const NodeId  id) const
inherited

returns the set of nodes with arc ingoing to a given node

Note that the set of nodes returned may be empty if no arc within the ArcGraphPart is ingoing into the given node.

Parameters
idthe node which is the head of an arc with the returned nodes
namethe name of the node the node which is the head of an arc with the returned nodes

Definition at line 53 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

53 { return dag_.parents(id); }
const NodeSet & parents(NodeId id) const
returns the set of nodes with arc ingoing to a given node
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ parents() [2/4]

INLINE const NodeSet & gum::DAGmodel::parents ( const std::string &  name) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 55 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

55  {
56  return parents(idFromName(name));
57  }
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:53
virtual NodeId idFromName(const std::string &name) const =0
Getter by name.
+ Here is the call graph for this function:

◆ parents() [3/4]

INLINE NodeSet gum::DAGmodel::parents ( const NodeSet ids) const
inherited

returns the parents of a set of nodes

Definition at line 76 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

76 { return dag_.children(ids); }
std::vector< NodeId > ids(const std::vector< std::string > &names) const
transform a vector of names into a vector of nodeId
NodeSet children(const NodeSet &ids) const
returns the set of children of a set of nodes
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ parents() [4/4]

INLINE NodeSet gum::DAGmodel::parents ( const std::vector< std::string > &  names) const
inherited

return true if the arc tail->head exists in the DAGmodel

Parameters
tailthe nodeId (or the name) of the tail in tail->head
headthe nodeId (or the name) of the head in tail->head
Returns
true if the arc exists

Definition at line 78 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

78  {
79  return parents(nodeset(names));
80  }
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:53
NodeSet nodeset(const std::vector< std::string > &names) const
transform a vector of names into a NodeSet
+ Here is the call graph for this function:

◆ property()

INLINE const std::string & gum::GraphicalModel::property ( const std::string &  name) const
inherited

Return the value of the property name of this GraphicalModel.

Exceptions
NotFoundRaised if no name property is found.

Definition at line 38 of file graphicalModel_inl.h.

38  {
39  try {
40  return _properties_()[name];
41  } catch (NotFound&) {
42  std::string msg = "The following property does not exists: ";
43  GUM_ERROR(NotFound, msg + name)
44  }
45  }
HashTable< std::string, std::string > & _properties_() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...
#define GUM_ERROR(type, msg)
Definition: exceptions.h:51

◆ propertyWithDefault()

INLINE const std::string & gum::GraphicalModel::propertyWithDefault ( const std::string &  name,
const std::string &  byDefault 
) const
inherited

Return the value of the property name of this GraphicalModel.

return byDefault if the property name is not found

Definition at line 57 of file graphicalModel_inl.h.

58  {
59  try {
60  return _properties_()[name];
61  } catch (NotFound&) { return byDefault; }
62  }
HashTable< std::string, std::string > & _properties_() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...

◆ setProperty()

INLINE void gum::GraphicalModel::setProperty ( const std::string &  name,
const std::string &  value 
)
inherited

Add or change a property of this GraphicalModel.

Definition at line 65 of file graphicalModel_inl.h.

65  {
66  try {
67  _properties_()[name] = value;
68  } catch (NotFound&) { _properties_().insert(name, value); }
69  }
HashTable< std::string, std::string > & _properties_() const
Return the properties of this Directed Graphical Model and initialize the hash table is necessary...
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.

◆ size()

INLINE Size gum::DAGmodel::size ( ) const
finalvirtualinherited

Returns the number of variables in this Directed Graphical Model.

Implements gum::GraphicalModel.

Definition at line 38 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

38 { return dag().size(); }
Size size() const
alias for sizeNodes
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ sizeArcs()

INLINE Size gum::DAGmodel::sizeArcs ( ) const
inherited

Returns the number of arcs in this Directed Graphical Model.

Definition at line 41 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

41 { return dag_.sizeArcs(); }
Size sizeArcs() const
indicates the number of arcs stored within the ArcGraphPart
DAG dag_
The DAG of this Directed Graphical Model.
Definition: DAGmodel.h:222
+ Here is the call graph for this function:

◆ toDot()

template<typename GUM_SCALAR >
INLINE std::string gum::prm::ClassBayesNet< GUM_SCALAR >::toDot ( ) const
virtual
Returns
Returns a dot representation of this IBayesNet.

Reimplemented from gum::IBayesNet< GUM_SCALAR >.

Definition at line 150 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

150  {
151  std::string tab = " ";
152  std::stringstream output;
153  output << "digraph \"";
154  output << _class_->name() << "\" {" << std::endl;
155 
156  for (const auto node: this->nodes()) {
157  if (this->children(node).size() > 0)
158  for (const auto chi: this->children(node)) {
159  output << tab << "\"" << variable(node).name() << "\" -> ";
160  output << "\"" << variable(chi).name() << "\";" << std::endl;
161  }
162  else if (this->parents(node).size() == 0) {
163  output << tab << "\"" << variable(node).name() << "\";" << std::endl;
164  }
165  }
166 
167  output << "}" << std::endl;
168  return output.str();
169  }
const NodeSet & children(const NodeId id) const
returns the set of nodes with arc outgoing from a given node
Definition: DAGmodel_inl.h:65
virtual const DiscreteVariable & variable(NodeId id) const
See gum::IBaseBayesNet::variable().
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
const NodeSet & parents(const NodeId id) const
returns the set of nodes with arc ingoing to a given node
Definition: DAGmodel_inl.h:53
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:38
const std::string & name() const
returns the name of the variable
const PRMClass< GUM_SCALAR > * _class_
The PRMClassElementContainer decorated by this.
+ Here is the call graph for this function:

◆ topologicalOrder()

INLINE const Sequence< NodeId > & gum::DAGmodel::topologicalOrder ( bool  clear = true) const
inherited

The topological order stays the same as long as no variable or arcs are added or erased src the topology.

Parameters
clearIf false returns the previously created topology.

Definition at line 86 of file DAGmodel_inl.h.

References gum::Set< Key, Alloc >::emplace().

86  {
87  return dag().topologicalOrder(clear);
88  }
const Sequence< NodeId > & topologicalOrder(bool clear=true) const
The topological order stays the same as long as no variable or arcs are added or erased src the topol...
Definition: diGraph.cpp:88
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35
+ Here is the call graph for this function:

◆ toString()

template<typename GUM_SCALAR >
INLINE std::string gum::IBayesNet< GUM_SCALAR >::toString ( ) const
inherited
Returns
Returns a string representation of this IBayesNet.

Definition at line 144 of file IBayesNet_tpl.h.

144  {
145  Size param = 0;
146  double dSize = log10DomainSize();
147 
148  for (auto node: nodes())
149  param += cpt(node).content()->realSize();
150 
151  std::stringstream s;
152  s << "BN{nodes: " << size() << ", arcs: " << dag().sizeArcs() << ", ";
153 
154  if (dSize > 6)
155  s << "domainSize: 10^" << dSize;
156  else
157  s << "domainSize: " << std::round(std::pow(10.0, dSize));
158 
159  s << ", dim: " << param << "}";
160 
161  return s.str();
162  }
const NodeGraphPart & nodes() const final
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:84
virtual Size size() const final
Returns the number of variables in this Directed Graphical Model.
Definition: DAGmodel_inl.h:38
virtual const Potential< GUM_SCALAR > & cpt(NodeId varId) const =0
Returns the CPT of a variable.
double log10DomainSize() const
Size sizeArcs() const
indicates the number of arcs stored within the ArcGraphPart
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:47
const DAG & dag() const
Returns a constant reference to the dag of this Bayes Net.
Definition: DAGmodel_inl.h:35

◆ variable()

template<typename GUM_SCALAR >
INLINE const DiscreteVariable & gum::prm::ClassBayesNet< GUM_SCALAR >::variable ( NodeId  id) const
virtual

See gum::IBaseBayesNet::variable().

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 100 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

100  {
101  return _get_(id).type().variable();
102  }
const PRMClassElement< GUM_SCALAR > & _get_(NodeId id) const
Private getter with type checking in case the id is not a formal PRMAttribute.
+ Here is the call graph for this function:

◆ variableFromName()

template<typename GUM_SCALAR >
INLINE const DiscreteVariable & gum::prm::ClassBayesNet< GUM_SCALAR >::variableFromName ( const std::string &  name) const
virtual

See gum::IBaseBayesNet::variableFromName().

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 116 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

116  {
117  return _get_(name).type().variable();
118  }
const PRMClassElement< GUM_SCALAR > & _get_(NodeId id) const
Private getter with type checking in case the id is not a formal PRMAttribute.
+ Here is the call graph for this function:

◆ variableNodeMap()

template<typename GUM_SCALAR >
INLINE const VariableNodeMap & gum::prm::ClassBayesNet< GUM_SCALAR >::variableNodeMap ( ) const
virtual

See gum::IBaseBayesNet::variableNodeMap().

Implements gum::IBayesNet< GUM_SCALAR >.

Definition at line 95 of file classBayesNet_tpl.h.

References gum::prm::ParamScopeData< GUM_SCALAR >::ParamScopeData().

95  {
96  GUM_ERROR(FatalError, "Sorry no VarMap in a ClassBayesNet.")
97  }
#define GUM_ERROR(type, msg)
Definition: exceptions.h:51
+ Here is the call graph for this function:

Member Data Documentation

◆ _class_

template<typename GUM_SCALAR >
const PRMClass< GUM_SCALAR >* gum::prm::ClassBayesNet< GUM_SCALAR >::_class_
private

The PRMClassElementContainer decorated by this.

Definition at line 143 of file classBayesNet.h.

◆ _modalities_

template<typename GUM_SCALAR >
NodeProperty< Size > gum::prm::ClassBayesNet< GUM_SCALAR >::_modalities_
mutableprivate

Definition at line 145 of file classBayesNet.h.

◆ _varNodeMap_

template<typename GUM_SCALAR >
HashTable< const DiscreteVariable*, const PRMClassElement< GUM_SCALAR >* > gum::prm::ClassBayesNet< GUM_SCALAR >::_varNodeMap_
private

Mapping between DiscreteVariable and their NodeId.

Definition at line 130 of file classBayesNet.h.

◆ dag_

DAG gum::DAGmodel::dag_
protectedinherited

The DAG of this Directed Graphical Model.

Definition at line 222 of file DAGmodel.h.


The documentation for this class was generated from the following files: