aGrUM  0.20.3
a C++ library for (probabilistic) graphical models
gum::BijectionImplementation< T1, T2, Alloc, Gen > Class Template Reference

A non scalar implementation of a Bijection. More...

#include <agrum/tools/core/bijection.h>

+ Collaboration diagram for gum::BijectionImplementation< T1, T2, Alloc, Gen >:

Public Member Functions

template<typename OtherAlloc >
INLINE void _copy_ (const HashTable< T1, T2 *, OtherAlloc > &f2s)
 
template<typename OtherAlloc >
INLINE BijectionImplementation (const BijectionImplementation< T1, T2, OtherAlloc, Gen > &toCopy)
 
template<typename OtherAlloc >
INLINE BijectionImplementation< T1, T2, Alloc, Gen > & operator= (const BijectionImplementation< T1, T2, OtherAlloc, Gen > &toCopy)
 
template<typename... Args>
INLINE void emplace (Args &&... args)
 
template<typename OtherAlloc >
INLINE void _copy_ (const HashTable< T1, T2, OtherAlloc > &f2s)
 
template<typename T1, typename T2, typename Alloc>
INLINE BijectionImplementation (const BijectionImplementation< T1, T2, Alloc, true > &toCopy)
 
template<typename OtherAlloc >
INLINE BijectionImplementation (const BijectionImplementation< T1, T2, OtherAlloc, true > &toCopy)
 
template<typename T1, typename T2, typename Alloc>
INLINE BijectionImplementation (BijectionImplementation< T1, T2, Alloc, true > &&toCopy) noexcept
 
template<typename OtherAlloc >
INLINE BijectionImplementation< T1, T2, Alloc, true > & operator= (const BijectionImplementation< T1, T2, OtherAlloc, true > &toCopy)
 
Constructors/destructors
 ~BijectionImplementation ()
 Destructor. More...
 
Accessors / Modifiers
const T1 & first (const T2 &second) const
 Returns the first value of a pair given its second value. More...
 
const T1 & firstWithDefault (const T2 &second, const T1 &default_val) const
 Returns the first value of a pair given its second value or default_val if second is unfound. More...
 
const T2 & second (const T1 &first) const
 Returns the second value of a pair given its first value. More...
 
const T2 & secondWithDefault (const T1 &second, const T2 &default_val) const
 Returns the second value of a pair given its first value or default_val if first is unfound. More...
 
bool existsFirst (const T1 &first) const
 Returns true if first is the first element in a pair in the gum::Bijection. More...
 
bool existsSecond (const T2 &second) const
 Returns true if second is the second element in a pair in the gum::Bijection. More...
 
void insert (const T1 &first, const T2 &second)
 Inserts a new association in the gum::Bijection. More...
 
void insert (T1 &&first, T2 &&second)
 Inserts a new association in the gum::Bijection. More...
 
template<typename... Args>
void emplace (Args &&... args)
 Emplace a new element in the gum::Bijection. More...
 
void clear ()
 Removes all the associations from the gum::Bijection. More...
 
bool empty () const noexcept
 Returns true if the gum::Bijection doesn't contain any association. More...
 
Size size () const noexcept
 Returns the number of associations stored within the gum::Bijection. More...
 
void eraseFirst (const T1 &first)
 Erases an association containing the given first element. More...
 
void eraseSecond (const T2 &second)
 Erases an association containing the given second element. More...
 
std::string toString () const
 Returns a friendly representatin of the gum::Bijection. More...
 
Fine tuning
Size capacity () const noexcept
 Returns the number of hashtables slots used. More...
 
void resize (Size new_size)
 Manually resize the gum::Bijection. More...
 
void setResizePolicy (const bool new_policy) noexcept
 Change the gum::Bijection resizing policy. More...
 
bool resizePolicy () const noexcept
 Returns true if the resize policy is automatic. More...
 

Public Types

using type1_type = T1
 types for STL compliance More...
 
using type1_reference = T1 &
 types for STL compliance More...
 
using type1_const_reference = const T1 &
 types for STL compliance More...
 
using type1_pointer = T1 *
 types for STL compliance More...
 
using type1_const_pointer = const T1 *
 types for STL compliance More...
 
using type2_type = T2
 types for STL compliance More...
 
using type2_reference = T2 &
 types for STL compliance More...
 
using type2_const_reference = const T2 &
 types for STL compliance More...
 
using type2_pointer = T2 *
 types for STL compliance More...
 
using type2_const_pointer = const T2 *
 types for STL compliance More...
 
using size_type = std::size_t
 types for STL compliance More...
 
using difference_type = std::ptrdiff_t
 types for STL compliance More...
 
using allocator_type = Alloc
 types for STL compliance More...
 
using iterator = BijectionIterator< T1, T2 >
 types for STL compliance More...
 
using const_iterator = BijectionIterator< T1, T2 >
 types for STL compliance More...
 
using iterator_safe = BijectionIteratorSafe< T1, T2 >
 types for STL compliance More...
 
using const_iterator_safe = BijectionIteratorSafe< T1, T2 >
 types for STL compliance More...
 
using allocator12_type = typename Alloc::template rebind< std::pair< T1, T2 *> >::other
 types for STL compliance More...
 
using allocator21_type = typename Alloc::template rebind< std::pair< T2, T1 *> >::other
 types for STL compliance More...
 

Friends

class BijectionIteratorSafe< T1, T2 >
 a friend to speed-up accesses More...
 
class BijectionIterator< T1, T2 >
 a friend to speed-up accesses More...
 
class Bijection< T1, T2, Alloc >
 a friend to speed-up accesses More...
 
template<typename TT1 , typename TT2 , typename A , bool >
class BijectionImplementation
 a friend to speed-up accesses More...
 

Iterators

iterator begin () const
 Returns the unsafe iterator at the beginning of the gum::Bijection. More...
 
const_iterator cbegin () const
 Returns the constant unsafe iterator at the beginning of the gum::Bjection. More...
 
const iteratorend () const noexcept
 Returns the unsafe iterator at the end of the gum::Bijection. More...
 
const const_iteratorcend () const noexcept
 Returns the constant iterator at the end of the gum::Bijection. More...
 
iterator_safe beginSafe () const
 Returns the safe iterator at the beginning of the gum::Bijection. More...
 
const_iterator_safe cbeginSafe () const
 Returns the constant safe iterator at the begining of the gum::Bijection. More...
 
const iterator_safeendSafe () const noexcept
 Returns the safe iterator at the end of the gum::Bijection. More...
 
const const_iterator_safecendSafe () const noexcept
 Returns the constant safe iterator at the end of the gum::Bijection. More...
 
static const iterator_safeendSafe4Statics ()
 Returns the safe end iterator for other classes' statics. More...
 
static const iteratorend4Statics ()
 Returns the unsafe end iterator for other classes' statics. More...
 

Detailed Description

template<typename T1, typename T2, typename Alloc, bool Gen>
class gum::BijectionImplementation< T1, T2, Alloc, Gen >

A non scalar implementation of a Bijection.

This class is designed for modeling a gum::Bijection between two sets, the idea is following :

  • We want to create a gum::Bjection relation between type T1 and type T2,
  • For x in T1, there exists only one y in T2 associated to x,
  • For y in T2, there exists only one x in T1 associated to y,
  • The user inserts all the (x, y) associations and can search efficiently the values thus associated.
Template Parameters
T1The first type of elements in the gum::Bjection.
T2The second type of elements in the gum::Bjection.
AllocThe allocator used for allocating memory.
GenIf true, this will be replaced by a implementation omptimized for non-scalar types.

Definition at line 84 of file bijection.h.

Member Typedef Documentation

◆ allocator12_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::allocator12_type = typename Alloc::template rebind< std::pair< T1, T2* > >::other

types for STL compliance

Definition at line 105 of file bijection.h.

◆ allocator21_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::allocator21_type = typename Alloc::template rebind< std::pair< T2, T1* > >::other

types for STL compliance

Definition at line 106 of file bijection.h.

◆ allocator_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::allocator_type = Alloc

types for STL compliance

Definition at line 100 of file bijection.h.

◆ const_iterator

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::const_iterator = BijectionIterator< T1, T2 >

types for STL compliance

Definition at line 102 of file bijection.h.

◆ const_iterator_safe

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::const_iterator_safe = BijectionIteratorSafe< T1, T2 >

types for STL compliance

Definition at line 104 of file bijection.h.

◆ difference_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::difference_type = std::ptrdiff_t

types for STL compliance

Definition at line 99 of file bijection.h.

◆ HashTable12

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::HashTable12 = HashTable< T1, T2*, allocator12_type >
private

Alias for more readable code.

Definition at line 635 of file bijection.h.

◆ HashTable21

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::HashTable21 = HashTable< T2, T1*, allocator21_type >
private

Alias for more readable code.

Definition at line 636 of file bijection.h.

◆ iterator

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::iterator = BijectionIterator< T1, T2 >

types for STL compliance

Definition at line 101 of file bijection.h.

◆ iterator_safe

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::iterator_safe = BijectionIteratorSafe< T1, T2 >

types for STL compliance

Definition at line 103 of file bijection.h.

◆ size_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::size_type = std::size_t

types for STL compliance

Definition at line 98 of file bijection.h.

◆ type1_const_pointer

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_const_pointer = const T1*

types for STL compliance

Definition at line 92 of file bijection.h.

◆ type1_const_reference

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_const_reference = const T1&

types for STL compliance

Definition at line 90 of file bijection.h.

◆ type1_pointer

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_pointer = T1*

types for STL compliance

Definition at line 91 of file bijection.h.

◆ type1_reference

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_reference = T1&

types for STL compliance

Definition at line 89 of file bijection.h.

◆ type1_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_type = T1

types for STL compliance

Definition at line 88 of file bijection.h.

◆ type2_const_pointer

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_const_pointer = const T2*

types for STL compliance

Definition at line 97 of file bijection.h.

◆ type2_const_reference

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_const_reference = const T2&

types for STL compliance

Definition at line 95 of file bijection.h.

◆ type2_pointer

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_pointer = T2*

types for STL compliance

Definition at line 96 of file bijection.h.

◆ type2_reference

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_reference = T2&

types for STL compliance

Definition at line 94 of file bijection.h.

◆ type2_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_type = T2

types for STL compliance

Definition at line 93 of file bijection.h.

Constructor & Destructor Documentation

◆ BijectionImplementation() [1/9]

template<typename T1 , typename T2 , typename Alloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc >::BijectionImplementation ( Size  size,
bool  resize_policy 
)
private

Default constructor: creates a gum::Bijection without any association.

Parameters
sizeThe Bijection starting size.
resize_policyIf true, the gum::Bijection will resize itself automatically.

Definition at line 83 of file bijection_tpl.h.

84  :
85  // warning: below, we create the internal hashTables with a key
86  // uniqueness
87  // policy set to false because we will do the uniqueness tests ourselves
88  // (this
89  // will speed-up the process)
90  _firstToSecond_(size, resize_policy, false),
91  _secondToFirst_(size, resize_policy, false) {
92  GUM_CONSTRUCTOR(BijectionImplementation);
93 
94  // make sure the end() iterator is constructed properly
95  end4Statics();
97  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645
static const iterator_safe & endSafe4Statics()
Returns the safe end iterator for other classes&#39; statics.
Definition: bijection_tpl.h:42
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
Size size() const noexcept
Returns the number of associations stored within the gum::Bijection.
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657
static const iterator & end4Statics()
Returns the unsafe end iterator for other classes&#39; statics.
Definition: bijection_tpl.h:49

◆ BijectionImplementation() [2/9]

template<typename T1, typename T2, typename Alloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc >::BijectionImplementation ( std::initializer_list< std::pair< T1, T2 > >  list)
private

Initializer list constructor.

Parameters
listThe initialize list.

Definition at line 101 of file bijection_tpl.h.

102  :
103  _firstToSecond_(Size(list.size()) / 2, true, false),
104  _secondToFirst_(Size(list.size()) / 2, true, false) {
105  GUM_CONSTRUCTOR(BijectionImplementation);
106 
107  for (const auto& elt: list) {
108  insert(elt.first, elt.second);
109  }
110 
111  // make sure the end() iterator is constructed properly
112  end4Statics();
113  endSafe4Statics();
114  }
void insert(const T1 &first, const T2 &second)
Inserts a new association in the gum::Bijection.
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645
static const iterator_safe & endSafe4Statics()
Returns the safe end iterator for other classes&#39; statics.
Definition: bijection_tpl.h:42
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:47
static const iterator & end4Statics()
Returns the unsafe end iterator for other classes&#39; statics.
Definition: bijection_tpl.h:49

◆ BijectionImplementation() [3/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, Alloc, Gen > &  toCopy)
private

Copy constructor.

Parameters
toCopyBijection to copy.

Definition at line 118 of file bijection_tpl.h.

119  :
120  _firstToSecond_(toCopy._firstToSecond_.capacity(), true, false),
121  _secondToFirst_(toCopy._secondToFirst_.capacity(), true, false) {
122  GUM_CONS_CPY(BijectionImplementation);
123  _copy_(toCopy._firstToSecond_);
124  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645
void _copy_(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ BijectionImplementation() [4/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, OtherAlloc, Gen > &  toCopy)
private

Generalized copy constructor.

Parameters
toCopyBijection to copy.

◆ BijectionImplementation() [5/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( BijectionImplementation< T1, T2, Alloc, Gen > &&  from)
privatenoexcept

Move constructor.

Parameters
fromBijection to move.

Definition at line 139 of file bijection_tpl.h.

140  :
141  _firstToSecond_(std::move(from._firstToSecond_)),
142  _secondToFirst_(std::move(from._secondToFirst_)) {
143  GUM_CONS_MOV(BijectionImplementation);
144  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ ~BijectionImplementation()

template<typename T1 , typename T2 , typename Alloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc >::~BijectionImplementation ( )

Destructor.

Definition at line 148 of file bijection_tpl.h.

148  {
149  GUM_DESTRUCTOR(BijectionImplementation);
150  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645

◆ BijectionImplementation() [6/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, OtherAlloc, Gen > &  toCopy)

Definition at line 129 of file bijection_tpl.h.

130  :
131  _firstToSecond_(toCopy._firstToSecond_.capacity(), true, false),
132  _secondToFirst_(toCopy._secondToFirst_.capacity(), true, false) {
133  GUM_CONS_CPY(BijectionImplementation);
134  _copy_(toCopy._firstToSecond_);
135  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645
void _copy_(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ BijectionImplementation() [7/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename T1, typename T2, typename Alloc>
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, Alloc, true > &  toCopy)

Definition at line 553 of file bijection_tpl.h.

554  :
555  _firstToSecond_(toCopy._firstToSecond_.capacity(), true, false),
556  _secondToFirst_(toCopy._secondToFirst_.capacity(), true, false) {
557  GUM_CONS_CPY(BijectionImplementation);
558  _copy_(toCopy._firstToSecond_);
559  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645
void _copy_(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ BijectionImplementation() [8/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, OtherAlloc, true > &  toCopy)

Definition at line 564 of file bijection_tpl.h.

565  :
566  _firstToSecond_(toCopy._firstToSecond_.capacity(), true, false),
567  _secondToFirst_(toCopy._secondToFirst_.capacity(), true, false) {
568  GUM_CONS_CPY(BijectionImplementation);
569  _copy_(toCopy._firstToSecond_);
570  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645
void _copy_(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ BijectionImplementation() [9/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename T1, typename T2, typename Alloc>
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( BijectionImplementation< T1, T2, Alloc, true > &&  toCopy)
noexcept

Definition at line 574 of file bijection_tpl.h.

575  :
576  _firstToSecond_(std::move(toCopy._firstToSecond_)),
577  _secondToFirst_(std::move(toCopy._secondToFirst_)) {
578  GUM_CONS_MOV(BijectionImplementation);
579  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:645
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

Member Function Documentation

◆ _copy_() [1/3]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc, Gen >::_copy_ ( const HashTable< T1, T2 *, OtherAlloc > &  f2s)

Definition at line 57 of file bijection_tpl.h.

58  {
59  // parse f2s and perform copies
60  for (auto iter = f2s.cbegin(); iter != f2s.cend(); ++iter) {
61  typename HashTable12::value_type* val1 = &(_firstToSecond_.insert(iter.key(), nullptr));
62  typename HashTable21::value_type* val2;
63 
64  try {
65  val2 = &(_secondToFirst_.insert(*(iter.val()), nullptr));
66  } catch (...) {
67  _firstToSecond_.erase(iter.key());
68  throw;
69  }
70 
71  val1->second = &(const_cast< T2& >(val2->first));
72  val2->second = &(const_cast< T1& >(val1->first));
73  }
74 
75  // note that _iter_end_ is actually a constant, whatever we add/remove
76  // to/from _firstToSecond_. As a consequence, it need not be updated
77  // after _copy_
78  }
void erase(const Key &key)
Removes a given element from the hash table.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
std::pair< const T1, T2 * > value_type
Definition: hashTable.h:672
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.

◆ _copy_() [2/3]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc, Gen >::_copy_ ( const HashTable< T1, T2, OtherAlloc > &  f2s)

Definition at line 532 of file bijection_tpl.h.

533  {
534  // parse f2s and perform copies
535  for (auto iter = f2s.cbegin(); iter != f2s.cend(); ++iter) {
536  _firstToSecond_.insert(iter.key(), iter.val());
537 
538  try {
539  _secondToFirst_.insert(iter.val(), iter.key());
540  } catch (...) {
541  _firstToSecond_.erase(iter.key());
542  throw;
543  }
544  }
545 
546  // note that _iter_end_ is actually a constant, whatever we add/remove
547  // to/from _firstToSecond_. As a consequence, it need not be updated
548  // after _copy_
549  }
void erase(const Key &key)
Removes a given element from the hash table.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.

◆ _copy_() [3/3]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
void gum::BijectionImplementation< T1, T2, Alloc, Gen >::_copy_ ( const HashTable< T1, T2 *, OtherAlloc > &  source)
private

A function that performs a complete copy of another gum::Bijection.

Warning
this function assumes that "this" is an empty gum::Bijection. If it is not the case, use function clear() before calling copy.
Parameters
sourceThe source from copied into this gum::Bijection.
Template Parameters
OtherAllocThe allocator used by source.

◆ _insert_() [1/2]

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE BijectionImplementation< T1, T2, Alloc, Gen >::HashTable12::value_type * gum::BijectionImplementation< T1, T2, Alloc, Gen >::_insert_ ( const T1 &  first,
const T2 &  second 
)
private

Inserts a new association into the gum::Bijection.

Parameters
firstThe first object in the association.
secondThe second object in the association.
Returns
Returns a pointer toward the inserted association.

Definition at line 299 of file bijection_tpl.h.

299  {
300  // check the uniqueness property
302  GUM_ERROR(DuplicateElement,
303  "the bijection contains an element with the same couple (" << first << "," << second
304  << ")");
305  }
306 
307  // insert copies of first and second
308  typename HashTable12::value_type* val1 = &(_firstToSecond_.insert(first, nullptr));
309  typename HashTable21::value_type* val2;
310 
311  try {
312  val2 = &(_secondToFirst_.insert(second, nullptr));
313  } catch (...) {
315  throw;
316  }
317 
318  val1->second = &(const_cast< T2& >(val2->first));
319  val2->second = &(const_cast< T1& >(val1->first));
320 
321  return val1;
322  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
void erase(const Key &key)
Removes a given element from the hash table.
bool existsSecond(const T2 &second) const
Returns true if second is the second element in a pair in the gum::Bijection.
bool existsFirst(const T1 &first) const
Returns true if first is the first element in a pair in the gum::Bijection.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
std::pair< const T1, T2 * > value_type
Definition: hashTable.h:672
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:51

◆ _insert_() [2/2]

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE BijectionImplementation< T1, T2, Alloc, Gen >::HashTable12::value_type * gum::BijectionImplementation< T1, T2, Alloc, Gen >::_insert_ ( T1 &&  first,
T2 &&  second 
)
private

Inserts a new association into the gum::Bijection.

Parameters
firstThe first object in the association.
secondThe second object in the association.
Returns
Returns a pointer toward the inserted association.

Definition at line 327 of file bijection_tpl.h.

327  {
328  // check the uniqueness property
330  GUM_ERROR(DuplicateElement,
331  "the bijection contains an element with the same couple (" << first << "," << second
332  << ")");
333  }
334 
335  // insert copies of first and second
336  typename HashTable12::value_type* val1 = &(_firstToSecond_.insert(std::move(first), nullptr));
337  typename HashTable21::value_type* val2;
338 
339  try {
340  val2 = &(_secondToFirst_.insert(std::move(second), nullptr));
341  } catch (...) {
342  _firstToSecond_.erase(val1->first);
343  throw;
344  }
345 
346  val1->second = &(const_cast< T2& >(val2->first));
347  val2->second = &(const_cast< T1& >(val1->first));
348 
349  return val1;
350  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
void erase(const Key &key)
Removes a given element from the hash table.
bool existsSecond(const T2 &second) const
Returns true if second is the second element in a pair in the gum::Bijection.
bool existsFirst(const T1 &first) const
Returns true if first is the first element in a pair in the gum::Bijection.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
std::pair< const T1, T2 * > value_type
Definition: hashTable.h:672
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:51

◆ begin()

template<typename T1 , typename T2 , typename Alloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >::iterator gum::BijectionImplementation< T1, T2, Alloc >::begin ( ) const

Returns the unsafe iterator at the beginning of the gum::Bijection.

Unsafe iterators are a little bit faster than safe ones. But this speed is at the expense of safety: if you point to an element that is deleted, then try to access it or trying to operate a ++ will most certainly result in a segfault. So, Unsafe iterators should only be used to parse gum::Bjection where no element is ever deleted. If unsure, prefer using safe iterators.

Note that the notion of a beginning/end of a gum::Bjection is rather fuzzy. What is important here is that for an instance bij of this class:

for(iterator iter = bij.begin(); iter != bij.end(); ++iter) {
// will parse all the associations.
}

Definition at line 215 of file bijection_tpl.h.

215  {
216  return BijectionIterator< T1, T2 >{*this};
217  }
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:642

◆ beginSafe()

template<typename T1 , typename T2 , typename Alloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >::iterator_safe gum::BijectionImplementation< T1, T2, Alloc >::beginSafe ( ) const

Returns the safe iterator at the beginning of the gum::Bijection.

Safe iterators are slightly slower than unsafe iterators. However, they guarantee that no segmentation fault can ever occur when trying to access the element they point to or when applying a ++ operator. When no element of the gum::Bijection is to be deleted during the parsing of the gum::Bijection (as for instance when you parse the gum::Bijection to display its content), prefer using the unsafe iterators, which are a little bit faster and cannot, in this case, produce segfaults.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.beginSafe(); iter != bij.endSafe(); ++iter) {
// loops will parse all the associations
}

Definition at line 245 of file bijection_tpl.h.

245  {
246  return BijectionIteratorSafe< T1, T2 >{*this};
247  }
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:641

◆ capacity()

template<typename T1 , typename T2 , typename Alloc >
INLINE Size gum::BijectionImplementation< T1, T2, Alloc >::capacity ( ) const
noexcept

Returns the number of hashtables slots used.

Returns
Returns the number of hashtables slots used.

Definition at line 429 of file bijection_tpl.h.

429  {
430  return _firstToSecond_.capacity();
431  }
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
Size capacity() const noexcept
Returns the number of slots in the &#39;nodes&#39; vector of the hashtable.

◆ cbegin()

template<typename T1 , typename T2 , typename Alloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >::const_iterator gum::BijectionImplementation< T1, T2, Alloc >::cbegin ( ) const

Returns the constant unsafe iterator at the beginning of the gum::Bjection.

Unsafe iterators are a little bit faster than safe ones. But this speed is at the expense of safety: if you point to an element that is deleted, then try to access it or trying to operate a ++ will most certainly result in a segfault. So, Unsafe iterators should only be used to parse gum::Bjection where no element is ever deleted. If unsure, prefer using safe iterators.

Note that the notion of a beginning/end of a gum::Bjection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.cbegin(); iter != bij.cend(); ++iter) {
// will parse all the association
}

Definition at line 222 of file bijection_tpl.h.

222  {
223  return BijectionIterator< T1, T2 >{*this};
224  }
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:642

◆ cbeginSafe()

template<typename T1 , typename T2 , typename Alloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >::const_iterator_safe gum::BijectionImplementation< T1, T2, Alloc >::cbeginSafe ( ) const

Returns the constant safe iterator at the begining of the gum::Bijection.

Safe iterators are slightly slower than unsafe iterators. However, they guarantee that no segmentation fault can ever occur when trying to access the element they point to or when applying a ++ operator. When no element of the gum::Bijection is to be deleted during the parsing of the gum::Bijection (as for instance when you parse the bijection to display its content), prefer using the unsafe iterators, which are a little bit faster and cannot, in this case, produce segfaults.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.cbeginSafe(); iter != bij.cendSafe(); ++iter) {
// loops will parse all the associations
}

Definition at line 252 of file bijection_tpl.h.

252  {
253  return BijectionIteratorSafe< T1, T2 >{*this};
254  }
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:641

◆ cend()

template<typename T1 , typename T2 , typename Alloc >
INLINE const BijectionImplementation< T1, T2, Alloc, true >::const_iterator & gum::BijectionImplementation< T1, T2, Alloc >::cend ( ) const
noexcept

Returns the constant iterator at the end of the gum::Bijection.

Unsafe iterators are a little bit faster than safe ones. But this speed is at the expense of safety: if you point to an element that is deleted, then try to access it or trying to operate a ++ will most certainly result in a segfault. So, Unsafe iterators should only be used to parse gum::Bijection where no element is ever deleted. If unsure, prefer using safe iterators.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.cbegin(); iter != bij.cend(); ++iter) {
// loops will parse all the associations
}

Definition at line 237 of file bijection_tpl.h.

237  {
238  return *(reinterpret_cast< const BijectionIterator< T1, T2 >* >(
240  }
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:642
static const BijectionIterator< int, int > * _BijectionIterEnd_
The unsafe iterator used by everyone.
Definition: bijection.h:1326

◆ cendSafe()

template<typename T1 , typename T2 , typename Alloc >
INLINE const BijectionImplementation< T1, T2, Alloc, true >::const_iterator_safe & gum::BijectionImplementation< T1, T2, Alloc >::cendSafe ( ) const
noexcept

Returns the constant safe iterator at the end of the gum::Bijection.

Safe iterators are slightly slower than unsafe iterators. However, they guarantee that no segmentation fault can ever occur when trying to access the element they point to or when applying a ++ operator. When no element of the gum::Bijection is to be deleted during the parsing of the gum::Bijection (as for instance when you parse the gum::Bijection to display its content), prefer using the unsafe iterators, which are a little bit faster and cannot, in this case, produce segfaults.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.cbeginSafe(); iter != bij.cendSafe(); ++iter) {
// loops will parse all the associations
}

Definition at line 267 of file bijection_tpl.h.

267  {
268  return *(reinterpret_cast< const BijectionIteratorSafe< T1, T2 >* >(
270  }
static const BijectionIteratorSafe< int, int > * _BijectionIterEndSafe_
The safe iterator used by everyone.
Definition: bijection.h:1323
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:641

◆ clear()

template<typename T1 , typename T2 , typename Alloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::clear ( )

Removes all the associations from the gum::Bijection.

Definition at line 154 of file bijection_tpl.h.

154  {
157  // note that _iter_end_ is actually a constant, whatever we add/remove
158  // to/from _firstToSecond_. As a consequence, it need not be updated
159  // after the clear's
160  }
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
void clear()
Removes all the elements in the hash table.
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ emplace() [1/2]

template<typename T1 , typename T2 , typename Alloc >
template<typename... Args>
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::emplace ( Args &&...  args)

Definition at line 390 of file bijection_tpl.h.

390  {
391  std::pair< T1, T2 > new_elt(std::forward< Args >(args)...);
392  _insert_(std::move(new_elt.first), std::move(new_elt.second));
393  }
HashTable12::value_type * _insert_(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ emplace() [2/2]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename... Args>
void gum::BijectionImplementation< T1, T2, Alloc, Gen >::emplace ( Args &&...  args)

Emplace a new element in the gum::Bijection.

The emplace method allows to construct directly an element of type Key by passing to its constructor all the arguments it needs.

Parameters
argsthe arguments passed to the constructor
Exceptions
DuplicateElementexception is thrown if the association already exists

◆ empty()

template<typename T1 , typename T2 , typename Alloc >
INLINE bool gum::BijectionImplementation< T1, T2, Alloc >::empty ( ) const
noexcept

Returns true if the gum::Bijection doesn't contain any association.

Returns
Returns true if the gum::Bijection doesn't contain any association.

Definition at line 397 of file bijection_tpl.h.

397  {
398  GUM_ASSERT(_firstToSecond_.empty() == _secondToFirst_.empty());
399  return _firstToSecond_.empty();
400  }
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657
bool empty() const noexcept
Indicates whether the hash table is empty.

◆ end()

template<typename T1 , typename T2 , typename Alloc >
INLINE const BijectionImplementation< T1, T2, Alloc, true >::iterator & gum::BijectionImplementation< T1, T2, Alloc >::end ( ) const
noexcept

Returns the unsafe iterator at the end of the gum::Bijection.

Unsafe iterators are a little bit faster than safe ones. But this speed is at the expense of safety: if you point to an element that is deleted, then try to access it or trying to operate a ++ will most certainly result in a segfault. So, Unsafe iterators should only be used to parse gum::Bijection where no element is ever deleted. If unsure, prefer using safe iterators.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for(iterator iter = bij.begin(); iter != bij.end(); ++iter) {
// loops will parse all the associations
}

Definition at line 229 of file bijection_tpl.h.

229  {
230  return *(reinterpret_cast< const BijectionIterator< T1, T2 >* >(
232  }
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:642
static const BijectionIterator< int, int > * _BijectionIterEnd_
The unsafe iterator used by everyone.
Definition: bijection.h:1326

◆ end4Statics()

template<typename T1 , typename T2 , typename Alloc >
const BijectionIterator< T1, T2 > & gum::BijectionImplementation< T1, T2, Alloc >::end4Statics ( )
static

Returns the unsafe end iterator for other classes' statics.

To reduce the gum::Bijection memory consumption (which are heavily used in aGrUM) while allowing fast for loops, end iterators are created just once as a static member of a non-template gum::Bijection. While this scheme is efficient and it works quite effectively, it has a drawback: other classes with static members using the BijectionImplementation::end() iterator may fail to work due to the well known "static initialization order fiasco" (see Marshall Cline's C++ FAQ for more details about this C++ feature).

So what is the problem? Consider a class, say X, containing a gum::Bijection that stores all its elements in a convenient way. To reduce memory consumption, X::end iterator is a static member that is initialized with a gum::Bijection::end iterator. If the compiler decides to initialize X::end before initializing gum::Bijection::end, then X::end will be in an incoherent state.

Unfortunately, we cannot know for sure in which order static members will be initialized (the order is a compiler's decision). Hence, we shall enfore the fact that gum::Bijection::end is initialized before X::end. Using method gum::Bijection::end4Statics will ensure this fact: it uses the C++ "construct on first use" idiom (see the C++ FAQ) that ensures that the order fiasco is avoided. More precisely, end4Statics uses a global variable that is the very end iterator used by all gum::Bijection. Now, this induces a small overhead. So, we also provide a gum::Bijection::end() method that returns the gum::Bijection::end iterator without this small overhead, but assuming that function end4Statics has already been called once (which is always the case) when a gum::Bijection has been created.

So, to summarize: when initializing static members use end4Statics() and in all the other cases, use end().

Definition at line 49 of file bijection_tpl.h.

49  {
50  return *(reinterpret_cast< const BijectionIterator< T1, T2 >* >(
52  }
static const BijectionIterator< int, int > * end4Statics()
Creates (if needed) and returns the iterator BijectionIterEnd.
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:642

◆ endSafe()

template<typename T1 , typename T2 , typename Alloc >
INLINE const BijectionImplementation< T1, T2, Alloc, true >::iterator_safe & gum::BijectionImplementation< T1, T2, Alloc >::endSafe ( ) const
noexcept

Returns the safe iterator at the end of the gum::Bijection.

Safe iterators are slightly slower than unsafe iterators. However, they guarantee that no segmentation fault can ever occur when trying to access the element they point to or when applying a ++ operator. When no element of the gum::Bijection is to be deleted during the parsing of the gum::Bijection (as for instance when you parse the gum::Bijection to display its content), prefer using the unsafe iterators, which are a little bit faster and cannot, in this case, produce segfaults.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.beginSafe(); iter != bij.endSafe(); ++iter) {
// loops will parse all the associations
}

Definition at line 259 of file bijection_tpl.h.

259  {
260  return *(reinterpret_cast< const BijectionIteratorSafe< T1, T2 >* >(
262  }
static const BijectionIteratorSafe< int, int > * _BijectionIterEndSafe_
The safe iterator used by everyone.
Definition: bijection.h:1323
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:641

◆ endSafe4Statics()

template<typename T1 , typename T2 , typename Alloc >
const BijectionIteratorSafe< T1, T2 > & gum::BijectionImplementation< T1, T2, Alloc >::endSafe4Statics ( )
static

Returns the safe end iterator for other classes' statics.

To reduce the gum::Bijection memory consumption (which are heavily used in aGrUM) while allowing fast for loops, end iterators are created just once as a static member of a non-template gum::Bijection. While this scheme is efficient and it works quite effectively, it has a drawback: other classes with static members using the BijectionImplementation::end() iterator may fail to work due to the well known "static initialization order fiasco" (see Marshall Cline's C++ FAQ for more details about this C++ feature).

So what is the problem? Consider a class, say X, containing a gum::Bijection that stores all its elements in a convenient way. To reduce memory consumption, X::end iterator is a static member that is initialized with a gum::Bijection::end iterator. If the compiler decides to initialize X::end before initializing gum::Bijection::end, then X::end will be in an incoherent state.

Unfortunately, we cannot know for sure in which order static members will be initialized (the order is a compiler's decision). Hence, we shall enfore the fact that gum::Bijection::end is initialized before X::end. Using method gum::Bijection::end4Statics will ensure this fact: it uses the C++ "construct on first use" idiom (see the C++ FAQ) that ensures that the order fiasco is avoided. More precisely, end4Statics uses a global variable that is the very end iterator used by all gum::Bijection. Now, this induces a small overhead. So, we also provide a gum::Bijection::end() method that returns the gum::Bijection::end iterator without this small overhead, but assuming that function end4Statics has already been called once (which is always the case) when a gum::Bijection has been created.

So, to summarize: when initializing static members use endSafe4Statics() and in all the other cases, use endSafe().

Definition at line 42 of file bijection_tpl.h.

42  {
43  return *(reinterpret_cast< const BijectionIteratorSafe< T1, T2 >* >(
45  }
static const BijectionIteratorSafe< int, int > * endSafe4Statics()
Creates (if needed) and returns the iterator BijectionIterEndSafe
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:641

◆ eraseFirst()

template<typename T1, typename T2 , typename Alloc , bool Gen>
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::eraseFirst ( const T1 &  first)

Erases an association containing the given first element.

If the element cannot be found, nothing is done. In particular, no exception is raised.

Parameters
firstThe first element of a pair in the gum::Bijection.

Definition at line 411 of file bijection_tpl.h.

411  {
412  try {
414  _firstToSecond_.erase(first);
415  } catch (NotFound&) {}
416  }
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
void erase(const Key &key)
Removes a given element from the hash table.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ eraseSecond()

template<typename T1 , typename T2, typename Alloc , bool Gen>
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::eraseSecond ( const T2 &  second)

Erases an association containing the given second element.

If the element cannot be found, nothing is done. In particular, no exception is raised.

Parameters
secondThe second element of a pair in the gum::Bijection.

Definition at line 420 of file bijection_tpl.h.

420  {
421  try {
423  _secondToFirst_.erase(second);
424  } catch (NotFound&) {}
425  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
void erase(const Key &key)
Removes a given element from the hash table.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ existsFirst()

template<typename T1, typename T2 , typename Alloc , bool Gen>
INLINE bool gum::BijectionImplementation< T1, T2, Alloc >::existsFirst ( const T1 &  first) const

Returns true if first is the first element in a pair in the gum::Bijection.

Parameters
firstThe element tested for existence.
Returns
Returns true if first is in the first element in a pair in the gum::Bijection.

Definition at line 286 of file bijection_tpl.h.

286  {
287  return _firstToSecond_.exists(first);
288  }
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
bool exists(const Key &key) const
Checks whether there exists an element with a given key in the hashtable.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654

◆ existsSecond()

template<typename T1 , typename T2, typename Alloc , bool Gen>
INLINE bool gum::BijectionImplementation< T1, T2, Alloc >::existsSecond ( const T2 &  second) const

Returns true if second is the second element in a pair in the gum::Bijection.

Parameters
secondThe element tested for existence.
Returns
Returns true if second is in the second element in a pair in the gum::Bijection.

Definition at line 292 of file bijection_tpl.h.

292  {
293  return _secondToFirst_.exists(second);
294  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
bool exists(const Key &key) const
Checks whether there exists an element with a given key in the hashtable.
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ first()

template<typename T1 , typename T2, typename Alloc , bool Gen>
INLINE const T1 & gum::BijectionImplementation< T1, T2, Alloc >::first ( const T2 &  second) const

Returns the first value of a pair given its second value.

Parameters
secondThe second value of a pair in the gum::Bijection.
Returns
Returns the first value of a pair given its second value.
Exceptions
NotFoundRaised if the element cannot be found.

Definition at line 274 of file bijection_tpl.h.

274  {
275  return *(_secondToFirst_[second]);
276  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ firstWithDefault()

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE const T1 & gum::BijectionImplementation< T1, T2, Alloc >::firstWithDefault ( const T2 &  second,
const T1 &  default_val 
) const

Returns the first value of a pair given its second value or default_val if second is unfound.

Parameters
secondThe second value of a pair in the gum::Bijection.
default_valThe default value returned if second is not in the gum::Bijection.
Returns
Returns the first value of a pair given its second value or default_val if second is not in the bjection.

Definition at line 356 of file bijection_tpl.h.

357  {
358  try {
359  return first(second);
360  } catch (NotFound&) { return _insert_(val, second)->first; }
361  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12::value_type * _insert_(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ insert() [1/2]

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE void gum::BijectionImplementation< T1, T2, Alloc, Gen >::insert ( const T1 &  first,
const T2 &  second 
)

Inserts a new association in the gum::Bijection.

The values are added by copy.

Parameters
firstThe first element of the pair to insert.
secondThe second element of the pair to insert.
Exceptions
DuplicateElementRaised if the association already exists.

Definition at line 376 of file bijection_tpl.h.

377  {
379  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12::value_type * _insert_(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ insert() [2/2]

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE void gum::BijectionImplementation< T1, T2, Alloc, Gen >::insert ( T1 &&  first,
T2 &&  second 
)

Inserts a new association in the gum::Bijection.

The values are moved in the gum::Bijection.

Parameters
firstThe first element of the pair to insert.
secondThe second element of the pair to insert.
Exceptions
DuplicateElementRaised if the association already exists.

Definition at line 383 of file bijection_tpl.h.

383  {
384  _insert_(std::move(first), std::move(second));
385  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12::value_type * _insert_(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ operator=() [1/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
INLINE BijectionImplementation< T1, T2, Alloc, Gen > & gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( const BijectionImplementation< T1, T2, Alloc, Gen > &  toCopy)
private

Copy operator.

Parameters
toCopyBijection to copy.
Returns
Returns the gum::Bijection in which the copy was made.

Definition at line 165 of file bijection_tpl.h.

166  {
167  // avoid self assignment
168  if (this != &toCopy) {
169  clear();
170  _copy_(toCopy._firstToSecond_);
171  }
172 
173  // note that _iter_end_ is actually a constant, whatever we add/remove
174  // to/from _firstToSecond_. As a consequence, it need not be updated
175  // after _copy_
176  return *this;
177  }
void clear()
Removes all the associations from the gum::Bijection.
void _copy_(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.

◆ operator=() [2/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
BijectionImplementation< T1, T2, Alloc, Gen >& gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( const BijectionImplementation< T1, T2, OtherAlloc, Gen > &  toCopy)
private

Generalized copy operator.

Parameters
toCopyBijection to copy.
Returns
Returns the gum::Bijection in which the copy was made.

◆ operator=() [3/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
INLINE BijectionImplementation< T1, T2, Alloc, Gen > & gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( BijectionImplementation< T1, T2, Alloc, Gen > &&  toCopy)
private

Move operator.

Parameters
toCopyBijection to move
Returns
Returns the moved gum::Bijection in which the move was made.

Definition at line 197 of file bijection_tpl.h.

198  {
199  // avoid self assignment
200  if (this != &from) {
201  clear();
202  _firstToSecond_ = std::move(from._firstToSecond_);
203  _secondToFirst_ = std::move(from._secondToFirst_);
204  }
205 
206  // note that _iter_end_ is actually a constant, whatever we add/remove
207  // to/from _firstToSecond_. As a consequence, it need not be updated
208  // after _copy_
209  return *this;
210  }
void clear()
Removes all the associations from the gum::Bijection.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ operator=() [4/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE BijectionImplementation< T1, T2, Alloc, Gen >& gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( const BijectionImplementation< T1, T2, OtherAlloc, Gen > &  toCopy)

Definition at line 183 of file bijection_tpl.h.

184  {
185  clear();
186  _copy_(toCopy._firstToSecond_);
187 
188  // note that _iter_end_ is actually a constant, whatever we add/remove
189  // to/from _firstToSecond_. As a consequence, it need not be updated
190  // after _copy_
191  return *this;
192  }
void clear()
Removes all the associations from the gum::Bijection.
void _copy_(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.

◆ operator=() [5/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >& gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( const BijectionImplementation< T1, T2, OtherAlloc, true > &  toCopy)

Definition at line 678 of file bijection_tpl.h.

679  {
680  clear();
681  _copy_(toCopy._firstToSecond_);
682 
683  // note that _iter_end_ is actually a constant, whatever we add/remove
684  // to/from _firstToSecond_. As a consequence, it need not be updated
685  // after _copy_
686  return *this;
687  }
void clear()
Removes all the associations from the gum::Bijection.
void _copy_(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.

◆ resize()

template<typename T1 , typename T2 , typename Alloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::resize ( Size  new_size)

Manually resize the gum::Bijection.

See gum::HashTable::resize(gum::Size)

Parameters
new_sizeThe gum::Bijection new size.

Definition at line 435 of file bijection_tpl.h.

435  {
436  _firstToSecond_.resize(new_size);
437  _secondToFirst_.resize(new_size);
438  }
void resize(Size new_size)
Changes the number of slots in the &#39;nodes&#39; vector of the hash table.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ resizePolicy()

template<typename T1 , typename T2 , typename Alloc >
INLINE bool gum::BijectionImplementation< T1, T2, Alloc >::resizePolicy ( ) const
noexcept

Returns true if the resize policy is automatic.

See gum::HashTable::resizePolicy().

Returns
Returns true if the resize policy is automatic.

Definition at line 450 of file bijection_tpl.h.

450  {
451  return _firstToSecond_.resizePolicy();
452  }
bool resizePolicy() const noexcept
Returns the current resizing policy.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654

◆ second()

template<typename T1, typename T2 , typename Alloc , bool Gen>
INLINE const T2 & gum::BijectionImplementation< T1, T2, Alloc >::second ( const T1 &  first) const

Returns the second value of a pair given its first value.

Parameters
firstThe first value of a pair in the gum::Bijection.
Returns
Returns the second value of a pair given its first value.
Exceptions
NotFoundRaised if the element cannot be found.

Definition at line 280 of file bijection_tpl.h.

280  {
281  return *(_firstToSecond_[first]);
282  }
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654

◆ secondWithDefault()

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE const T2 & gum::BijectionImplementation< T1, T2, Alloc >::secondWithDefault ( const T1 &  second,
const T2 &  default_val 
) const

Returns the second value of a pair given its first value or default_val if first is unfound.

Parameters
secondThe second value of a pair in the gum::Bijection.
default_valThe default value returned if first is not in the gum::Bijection.
Returns
Returns the second value of a pair given its first value or default_val if first is not in the bjection.

Definition at line 367 of file bijection_tpl.h.

368  {
369  try {
370  return second(first);
371  } catch (NotFound&) { return *(_insert_(first, val)->second); }
372  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12::value_type * _insert_(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ setResizePolicy()

template<typename T1 , typename T2 , typename Alloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::setResizePolicy ( const bool  new_policy)
noexcept

Change the gum::Bijection resizing policy.

See gum::HashTable::setResizePolicy( const bool );

Parameters
new_policyIf true, the gum::Bijection will resize automatically.

Definition at line 442 of file bijection_tpl.h.

443  {
444  _firstToSecond_.setResizePolicy(new_policy);
445  _secondToFirst_.setResizePolicy(new_policy);
446  }
void setResizePolicy(const bool new_policy) noexcept
Enables the user to change dynamically the resizing policy.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ size()

template<typename T1 , typename T2 , typename Alloc >
INLINE Size gum::BijectionImplementation< T1, T2, Alloc >::size ( ) const
noexcept

Returns the number of associations stored within the gum::Bijection.

Returns
Returns the number of associations stored within the gum::Bijection.

Definition at line 404 of file bijection_tpl.h.

404  {
405  GUM_ASSERT(_firstToSecond_.size() == _secondToFirst_.size());
406  return _firstToSecond_.size();
407  }
Size size() const noexcept
Returns the number of elements stored into the hashtable.
HashTable12 _firstToSecond_
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:654
HashTable21 _secondToFirst_
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:657

◆ toString()

template<typename T1 , typename T2 , typename Alloc >
std::string gum::BijectionImplementation< T1, T2, Alloc >::toString ( ) const

Returns a friendly representatin of the gum::Bijection.

Returns
Returns a friendly representatin of the gum::Bijection.

Definition at line 456 of file bijection_tpl.h.

456  {
457  std::stringstream stream;
458  stream << "{ ";
459  bool first = true;
460 
461  for (iterator iter = begin(); iter != end(); ++iter) {
462  if (!first)
463  stream << ", ";
464  else
465  first = false;
466 
467  stream << '(' << iter.first() << " <-> " << iter.second() << ')';
468  }
469 
470  stream << " }";
471  return stream.str();
472  }
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
iterator begin() const
Returns the unsafe iterator at the beginning of the gum::Bijection.
BijectionIterator< T1, T2 > iterator
types for STL compliance
Definition: bijection.h:101
const iterator & end() const noexcept
Returns the unsafe iterator at the end of the gum::Bijection.

Friends And Related Function Documentation

◆ BijectionImplementation

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename TT1 , typename TT2 , typename A , bool >
friend class BijectionImplementation
friend

a friend to speed-up accesses

Definition at line 645 of file bijection.h.

◆ Bijection< T1, T2, Alloc >

template<typename T1, typename T2, typename Alloc, bool Gen>
friend class Bijection< T1, T2, Alloc >
friend

a friend to speed-up accesses

Definition at line 643 of file bijection.h.

◆ BijectionIterator< T1, T2 >

template<typename T1, typename T2, typename Alloc, bool Gen>
friend class BijectionIterator< T1, T2 >
friend

a friend to speed-up accesses

Definition at line 642 of file bijection.h.

◆ BijectionIteratorSafe< T1, T2 >

template<typename T1, typename T2, typename Alloc, bool Gen>
friend class BijectionIteratorSafe< T1, T2 >
friend

a friend to speed-up accesses

Definition at line 641 of file bijection.h.

Member Data Documentation

◆ _firstToSecond_

template<typename T1, typename T2, typename Alloc, bool Gen>
HashTable12 gum::BijectionImplementation< T1, T2, Alloc, Gen >::_firstToSecond_
private

The gum::HashTable associating T2 objects to T1 objects.

Definition at line 654 of file bijection.h.

◆ _secondToFirst_

template<typename T1, typename T2, typename Alloc, bool Gen>
HashTable21 gum::BijectionImplementation< T1, T2, Alloc, Gen >::_secondToFirst_
private

The gum::HashTable associating T1 objects to T2 objects.

Definition at line 657 of file bijection.h.


The documentation for this class was generated from the following files: