![]() |
aGrUM
0.14.2
|
This file implements a Hybrid sampling class using LoopyBeliefPropagation and an approximate Inference method. More...
#include <agrum/BN/inference/GibbsSampling.h>
#include <agrum/BN/inference/MonteCarloSampling.h>
#include <agrum/BN/inference/importanceSampling.h>
#include <agrum/BN/inference/tools/approximateInference.h>
#include <agrum/BN/inference/tools/marginalTargetedInference.h>
#include <agrum/BN/inference/weightedSampling.h>
#include <agrum/BN/inference/loopySamplingInference_tpl.h>
Go to the source code of this file.
Classes | |
class | gum::LoopySamplingInference< GUM_SCALAR, APPROX > |
<agrum/BN/inference/loopySamplingInference.h> More... | |
Namespaces | |
gum | |
gum is the global namespace for all aGrUM entities | |
Typedefs | |
template<typename GUM_SCALAR > | |
using | gum::HybridMonteCarloSampling = LoopySamplingInference< GUM_SCALAR, MonteCarloSampling > |
template<typename GUM_SCALAR > | |
using | gum::HybridWeightedSampling = LoopySamplingInference< GUM_SCALAR, WeightedSampling > |
template<typename GUM_SCALAR > | |
using | gum::HybridImportanceSampling = LoopySamplingInference< GUM_SCALAR, ImportanceSampling > |
template<typename GUM_SCALAR > | |
using | gum::HybridGibbsSampling = LoopySamplingInference< GUM_SCALAR, GibbsSampling > |
This file implements a Hybrid sampling class using LoopyBeliefPropagation and an approximate Inference method.
Definition in file loopySamplingInference.h.