31 #ifndef GUM_GIBBS_KL2_H 32 #define GUM_GIBBS_KL2_H 75 template <
typename GUM_SCALAR >
130 #ifndef GUM_NO_EXTERN_TEMPLATE_CLASS This file contains Gibbs sampling (for BNs) class definitions.
This file contains general scheme for iteratively convergent algorithms.
algorithm for KL divergence between BNs
Class representing the minimal interface for Bayesian Network.
gum is the global namespace for all aGrUM entities
~GibbsBNdistance()
destructor
KL divergence between BNs – implementation using Gibbs sampling.
GibbsKL computes the KL divergence betweens 2 BNs using an approximation pattern: GIBBS sampling...
Size burnIn() const
Returns the number of burn in.
void setBurnIn(Size b)
Number of burn in for one iteration.
std::size_t Size
In aGrUM, hashed values are unsigned long int.
class containing all variables and methods required for Gibbssampling
GibbsBNdistance(const IBayesNet< GUM_SCALAR > &P, const IBayesNet< GUM_SCALAR > &Q)
constructor must give 2 BNs