29 #include <type_traits> 40 template <
typename GRAPH_CHANGES_
SELECTOR >
45 typename GRAPH_CHANGES_SELECTOR::GeneratorType >::value,
46 "K2 must be called with a K2-compliant Graph Change Generator");
52 auto& generator = selector.graphChangeGenerator();
60 template <
typename GUM_SCALAR,
61 typename GRAPH_CHANGES_SELECTOR,
62 typename PARAM_ESTIMATOR >
64 PARAM_ESTIMATOR& estimator,
69 typename GRAPH_CHANGES_SELECTOR::GeneratorType >::value,
70 "K2 must be called with a K2-compliant Graph Change Generator");
76 auto& generator = selector.graphChangeGenerator();
80 return GreedyHillClimbing::learnBN< GUM_SCALAR >(
81 selector, estimator, initial_dag);
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Class representing a Bayesian Network.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
Copyright 2005-2019 Pierre-Henri WUILLEMIN et Christophe GONZALES (LIP6) {prenom.nom}_at_lip6.fr.
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
Sequence< NodeId > __order
the order on the variable used for learning
BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG())
learns the structure and the parameters of a BN