![]() |
aGrUM
0.16.0
|
#include <K2.h>
Public Member Functions | |
Constructors / Destructors | |
K2 () | |
default constructor More... | |
K2 (const K2 &from) | |
copy constructor More... | |
K2 (K2 &&from) | |
move constructor More... | |
~K2 () | |
destructor More... | |
Operators | |
K2 & | operator= (const K2 &from) |
copy operator More... | |
K2 & | operator= (K2 &&from) |
move operator More... | |
Accessors / Modifiers | |
Sequence< NodeId > | __order |
the order on the variable used for learning More... | |
ApproximationScheme & | approximationScheme () |
returns the approximation policy of the learning algorithm More... | |
void | setOrder (const Sequence< NodeId > &order) |
sets the order on the variables More... | |
void | setOrder (const std::vector< NodeId > &order) |
sets the order on the variables More... | |
const Sequence< NodeId > & | order () const noexcept |
returns the current order More... | |
template<typename GRAPH_CHANGES_SELECTOR > | |
DAG | learnStructure (GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG()) |
learns the structure of a Bayes net More... | |
template<typename GUM_SCALAR , typename GRAPH_CHANGES_SELECTOR , typename PARAM_ESTIMATOR > | |
BayesNet< GUM_SCALAR > | learnBN (GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG()) |
learns the structure and the parameters of a BN More... | |
void | __checkOrder (const std::vector< Size > &modal) |
checks that the order passed to K2 is coherent with the variables as specified by their modalities More... | |
|
stronginherited |
The different state of an approximation scheme.
Enumerator | |
---|---|
Undefined | |
Continue | |
Epsilon | |
Rate | |
Limit | |
TimeLimit | |
Stopped |
Definition at line 65 of file IApproximationSchemeConfiguration.h.
gum::learning::K2::K2 | ( | ) |
default constructor
gum::learning::K2::K2 | ( | const K2 & | from | ) |
copy constructor
gum::learning::K2::K2 | ( | K2 && | from | ) |
move constructor
gum::learning::K2::~K2 | ( | ) |
destructor
|
private |
checks that the order passed to K2 is coherent with the variables as specified by their modalities
ApproximationScheme& gum::learning::K2::approximationScheme | ( | ) |
returns the approximation policy of the learning algorithm
Referenced by gum::learning::genericBNLearner::__learnDAG(), gum::learning::genericBNLearner::disableEpsilon(), gum::learning::genericBNLearner::disableMaxIter(), gum::learning::genericBNLearner::disableMaxTime(), gum::learning::genericBNLearner::disableMinEpsilonRate(), gum::learning::genericBNLearner::enableEpsilon(), gum::learning::genericBNLearner::enableMaxIter(), gum::learning::genericBNLearner::enableMaxTime(), gum::learning::genericBNLearner::enableMinEpsilonRate(), gum::learning::genericBNLearner::setEpsilon(), gum::learning::genericBNLearner::setMaxIter(), gum::learning::genericBNLearner::setMaxTime(), gum::learning::genericBNLearner::setMinEpsilonRate(), gum::learning::genericBNLearner::setPeriodSize(), and gum::learning::genericBNLearner::setVerbosity().
Update the scheme w.r.t the new error.
Test the stopping criterion that are enabled.
error | The new error value. |
OperationNotAllowed | Raised if state != ApproximationSchemeSTATE::Continue. |
Definition at line 227 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_current_epsilon, gum::ApproximationScheme::_current_rate, gum::ApproximationScheme::_current_state, gum::ApproximationScheme::_current_step, gum::ApproximationScheme::_enabled_eps, gum::ApproximationScheme::_enabled_max_iter, gum::ApproximationScheme::_enabled_max_time, gum::ApproximationScheme::_enabled_min_rate_eps, gum::ApproximationScheme::_eps, gum::ApproximationScheme::_history, gum::ApproximationScheme::_last_epsilon, gum::ApproximationScheme::_max_iter, gum::ApproximationScheme::_max_time, gum::ApproximationScheme::_min_rate_eps, gum::ApproximationScheme::_stopScheme(), gum::ApproximationScheme::_timer, gum::IApproximationSchemeConfiguration::Continue, gum::IApproximationSchemeConfiguration::Epsilon, GUM_EMIT3, GUM_ERROR, gum::IApproximationSchemeConfiguration::Limit, gum::IApproximationSchemeConfiguration::messageApproximationScheme(), gum::IApproximationSchemeConfiguration::onProgress, gum::IApproximationSchemeConfiguration::Rate, gum::ApproximationScheme::startOfPeriod(), gum::ApproximationScheme::stateApproximationScheme(), gum::Timer::step(), gum::IApproximationSchemeConfiguration::TimeLimit, and gum::ApproximationScheme::verbosity().
Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), gum::SamplingInference< GUM_SCALAR >::_loopApproxInference(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::learning::GreedyHillClimbing::learnStructure(), gum::learning::LocalSearchWithTabuList::learnStructure(), and gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::makeInference().
|
virtualinherited |
Returns the current running time in second.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 128 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_timer, and gum::Timer::step().
Referenced by gum::learning::genericBNLearner::currentTime().
|
virtualinherited |
Disable stopping criterion on epsilon.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 54 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_eps.
Referenced by gum::learning::genericBNLearner::disableEpsilon().
|
virtualinherited |
Disable stopping criterion on max iterations.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 105 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_max_iter.
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), gum::learning::genericBNLearner::disableMaxIter(), and gum::learning::GreedyHillClimbing::GreedyHillClimbing().
|
virtualinherited |
Disable stopping criterion on timeout.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 131 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_max_time.
Referenced by gum::learning::genericBNLearner::disableMaxTime(), and gum::learning::GreedyHillClimbing::GreedyHillClimbing().
|
virtualinherited |
Disable stopping criterion on epsilon rate.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 79 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_min_rate_eps.
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), gum::learning::genericBNLearner::disableMinEpsilonRate(), and gum::learning::GreedyHillClimbing::GreedyHillClimbing().
|
virtualinherited |
Enable stopping criterion on epsilon.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 57 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_eps.
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), and gum::learning::genericBNLearner::enableEpsilon().
|
virtualinherited |
Enable stopping criterion on max iterations.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 108 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_max_iter.
Referenced by gum::learning::genericBNLearner::enableMaxIter().
|
virtualinherited |
Enable stopping criterion on timeout.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 134 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_max_time.
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::CNMonteCarloSampling(), and gum::learning::genericBNLearner::enableMaxTime().
|
virtualinherited |
Enable stopping criterion on epsilon rate.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 84 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_min_rate_eps.
Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), and gum::learning::genericBNLearner::enableMinEpsilonRate().
|
virtualinherited |
Returns the value of epsilon.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 51 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_eps.
Referenced by gum::ImportanceSampling< GUM_SCALAR >::_onContextualize(), and gum::learning::genericBNLearner::epsilon().
|
virtualinherited |
Returns the scheme history.
OperationNotAllowed | Raised if the scheme did not performed or if verbosity is set to false. |
Implements gum::IApproximationSchemeConfiguration.
Definition at line 173 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_history, GUM_ERROR, gum::ApproximationScheme::stateApproximationScheme(), gum::IApproximationSchemeConfiguration::Undefined, and gum::ApproximationScheme::verbosity().
Referenced by gum::learning::genericBNLearner::history().
|
inherited |
Initialise the scheme.
Definition at line 187 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_current_epsilon, gum::ApproximationScheme::_current_rate, gum::ApproximationScheme::_current_state, gum::ApproximationScheme::_current_step, gum::ApproximationScheme::_history, gum::ApproximationScheme::_timer, gum::IApproximationSchemeConfiguration::Continue, and gum::Timer::reset().
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), gum::SamplingInference< GUM_SCALAR >::_loopApproxInference(), gum::SamplingInference< GUM_SCALAR >::_onStateChanged(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::learning::GreedyHillClimbing::learnStructure(), and gum::learning::LocalSearchWithTabuList::learnStructure().
|
virtualinherited |
Returns true if stopping criterion on epsilon is enabled, false otherwise.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 61 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_eps.
Referenced by gum::learning::genericBNLearner::isEnabledEpsilon().
|
virtualinherited |
Returns true if stopping criterion on max iterations is enabled, false otherwise.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 112 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_max_iter.
Referenced by gum::learning::genericBNLearner::isEnabledMaxIter().
|
virtualinherited |
Returns true if stopping criterion on timeout is enabled, false otherwise.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 138 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_max_time.
Referenced by gum::learning::genericBNLearner::isEnabledMaxTime().
|
virtualinherited |
Returns true if stopping criterion on epsilon rate is enabled, false otherwise.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 90 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_min_rate_eps.
Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), and gum::learning::genericBNLearner::isEnabledMinEpsilonRate().
BayesNet< GUM_SCALAR > gum::learning::K2::learnBN | ( | GRAPH_CHANGES_SELECTOR & | selector, |
PARAM_ESTIMATOR & | estimator, | ||
DAG | initial_dag = DAG() |
||
) |
DAG gum::learning::K2::learnStructure | ( | GRAPH_CHANGES_SELECTOR & | selector, |
DAG | initial_dag = DAG() |
||
) |
learns the structure of a Bayes net
selector | A selector class that computes the best changes that can be applied and that enables the user to get them very easily. Typically, the selector is a GraphChangesSelector4DiGraph<SCORE, STRUCT_CONSTRAINT, GRAPH_CHANGES_GENERATOR>. |
initial_dag | the DAG we start from for our learning |
Definition at line 41 of file K2_tpl.h.
References __order, and gum::learning::GreedyHillClimbing::learnStructure().
Referenced by gum::learning::genericBNLearner::__learnDAG().
|
virtualinherited |
Returns the criterion on number of iterations.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 102 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_max_iter.
Referenced by gum::learning::genericBNLearner::maxIter().
|
virtualinherited |
Returns the timeout (in seconds).
Implements gum::IApproximationSchemeConfiguration.
Definition at line 125 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_max_time.
Referenced by gum::learning::genericBNLearner::maxTime().
|
inherited |
Returns the approximation scheme message.
Definition at line 40 of file IApproximationSchemeConfiguration_inl.h.
References gum::IApproximationSchemeConfiguration::Continue, gum::IApproximationSchemeConfiguration::Epsilon, gum::IApproximationSchemeConfiguration::epsilon(), gum::IApproximationSchemeConfiguration::Limit, gum::IApproximationSchemeConfiguration::maxIter(), gum::IApproximationSchemeConfiguration::maxTime(), gum::IApproximationSchemeConfiguration::minEpsilonRate(), gum::IApproximationSchemeConfiguration::Rate, gum::IApproximationSchemeConfiguration::stateApproximationScheme(), gum::IApproximationSchemeConfiguration::Stopped, gum::IApproximationSchemeConfiguration::TimeLimit, and gum::IApproximationSchemeConfiguration::Undefined.
Referenced by gum::ApproximationScheme::_stopScheme(), gum::ApproximationScheme::continueApproximationScheme(), and gum::credal::InferenceEngine< GUM_SCALAR >::getApproximationSchemeMsg().
|
virtualinherited |
Returns the value of the minimal epsilon rate.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 74 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_min_rate_eps.
Referenced by gum::learning::genericBNLearner::minEpsilonRate().
|
virtualinherited |
Returns the number of iterations.
OperationNotAllowed | Raised if the scheme did not perform. |
Implements gum::IApproximationSchemeConfiguration.
Definition at line 163 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_current_step, GUM_ERROR, gum::ApproximationScheme::stateApproximationScheme(), and gum::IApproximationSchemeConfiguration::Undefined.
Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), and gum::learning::genericBNLearner::nbrIterations().
returns the current order
Referenced by gum::learning::genericBNLearner::__learnDAG().
|
virtualinherited |
Returns the period size.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 149 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_period_size.
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::makeInference(), and gum::learning::genericBNLearner::periodSize().
|
inherited |
Returns the remaining burn in.
Definition at line 210 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_burn_in, and gum::ApproximationScheme::_current_step.
|
virtualinherited |
Given that we approximate f(t), stopping criterion on |f(t+1)-f(t)|.
If the criterion was disabled it will be enabled.
eps | The new epsilon value. |
OutOfLowerBound | Raised if eps < 0. |
Implements gum::IApproximationSchemeConfiguration.
Definition at line 43 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_eps, gum::ApproximationScheme::_eps, and GUM_ERROR.
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::__mcInitApproximationScheme(), gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::GibbsSampling< GUM_SCALAR >::GibbsSampling(), gum::learning::GreedyHillClimbing::GreedyHillClimbing(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setEpsilon().
|
virtualinherited |
Stopping criterion on number of iterations.
If the criterion was disabled it will be enabled.
max | The maximum number of iterations. |
OutOfLowerBound | Raised if max <= 1. |
Implements gum::IApproximationSchemeConfiguration.
Definition at line 95 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_max_iter, gum::ApproximationScheme::_max_iter, and GUM_ERROR.
Referenced by gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setMaxIter().
|
virtualinherited |
Stopping criterion on timeout.
If the criterion was disabled it will be enabled.
timeout | The timeout value in seconds. |
OutOfLowerBound | Raised if timeout <= 0.0. |
Implements gum::IApproximationSchemeConfiguration.
Definition at line 118 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_max_time, gum::ApproximationScheme::_max_time, and GUM_ERROR.
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::CNMonteCarloSampling(), gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setMaxTime().
|
virtualinherited |
Given that we approximate f(t), stopping criterion on d/dt(|f(t+1)-f(t)|).
If the criterion was disabled it will be enabled
rate | The minimal epsilon rate. |
OutOfLowerBound | if rate<0 |
Implements gum::IApproximationSchemeConfiguration.
Definition at line 66 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_enabled_min_rate_eps, gum::ApproximationScheme::_min_rate_eps, and GUM_ERROR.
Referenced by gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::GibbsSampling< GUM_SCALAR >::GibbsSampling(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setMinEpsilonRate().
sets the order on the variables
Referenced by gum::learning::genericBNLearner::useK2().
void gum::learning::K2::setOrder | ( | const std::vector< NodeId > & | order | ) |
sets the order on the variables
|
virtualinherited |
How many samples between two stopping is enable.
p | The new period value. |
OutOfLowerBound | Raised if p < 1. |
Implements gum::IApproximationSchemeConfiguration.
Definition at line 143 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_period_size, and GUM_ERROR.
Referenced by gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::CNMonteCarloSampling(), gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setPeriodSize().
|
virtualinherited |
Set the verbosity on (true) or off (false).
v | If true, then verbosity is turned on. |
Implements gum::IApproximationSchemeConfiguration.
Definition at line 152 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_verbosity.
Referenced by gum::GibbsBNdistance< GUM_SCALAR >::GibbsBNdistance(), gum::SamplingInference< GUM_SCALAR >::SamplingInference(), and gum::learning::genericBNLearner::setVerbosity().
|
inherited |
Returns true if we are at the beginning of a period (compute error is mandatory).
Definition at line 197 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_burn_in, gum::ApproximationScheme::_current_step, and gum::ApproximationScheme::_period_size.
Referenced by gum::ApproximationScheme::continueApproximationScheme().
|
virtualinherited |
Returns the approximation scheme state.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 158 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_current_state.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::history(), gum::ApproximationScheme::nbrIterations(), and gum::learning::genericBNLearner::stateApproximationScheme().
|
inherited |
Stop the approximation scheme.
Definition at line 219 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_current_state, gum::ApproximationScheme::_stopScheme(), gum::IApproximationSchemeConfiguration::Continue, and gum::IApproximationSchemeConfiguration::Stopped.
Referenced by gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::learning::GreedyHillClimbing::learnStructure(), and gum::learning::LocalSearchWithTabuList::learnStructure().
|
inherited |
Update the scheme w.r.t the new error and increment steps.
incr | The new increment steps. |
Definition at line 206 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_current_step.
Referenced by gum::GibbsBNdistance< GUM_SCALAR >::_computeKL(), gum::SamplingInference< GUM_SCALAR >::_loopApproxInference(), gum::learning::DAG2BNLearner< ALLOC >::createBN(), gum::learning::GreedyHillClimbing::learnStructure(), gum::learning::LocalSearchWithTabuList::learnStructure(), and gum::credal::CNMonteCarloSampling< GUM_SCALAR, BNInferenceEngine >::makeInference().
|
virtualinherited |
Returns true if verbosity is enabled.
Implements gum::IApproximationSchemeConfiguration.
Definition at line 154 of file approximationScheme_inl.h.
References gum::ApproximationScheme::_verbosity.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::history(), and gum::learning::genericBNLearner::verbosity().
the order on the variable used for learning
Definition at line 119 of file K2.h.
Referenced by learnBN(), and learnStructure().
|
protectedinherited |
Number of iterations before checking stopping criteria.
Definition at line 414 of file approximationScheme.h.
Referenced by gum::GibbsSampling< GUM_SCALAR >::burnIn(), gum::GibbsBNdistance< GUM_SCALAR >::burnIn(), gum::ApproximationScheme::remainingBurnIn(), gum::GibbsSampling< GUM_SCALAR >::setBurnIn(), gum::GibbsBNdistance< GUM_SCALAR >::setBurnIn(), and gum::ApproximationScheme::startOfPeriod().
|
protectedinherited |
Current epsilon.
Definition at line 369 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), and gum::ApproximationScheme::initApproximationScheme().
|
protectedinherited |
Current rate.
Definition at line 375 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), and gum::ApproximationScheme::initApproximationScheme().
|
protectedinherited |
The current state.
Definition at line 384 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::_stopScheme(), gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::initApproximationScheme(), gum::ApproximationScheme::stateApproximationScheme(), and gum::ApproximationScheme::stopApproximationScheme().
|
protectedinherited |
The current step.
Definition at line 378 of file approximationScheme.h.
Referenced by gum::learning::Miic::_initiation(), gum::learning::Miic::_iteration(), gum::learning::Miic::_orientation_3off2(), gum::learning::Miic::_orientation_latents(), gum::learning::Miic::_orientation_miic(), gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::initApproximationScheme(), gum::learning::Miic::learnMixedStructure(), gum::ApproximationScheme::nbrIterations(), gum::ApproximationScheme::remainingBurnIn(), gum::ApproximationScheme::startOfPeriod(), and gum::ApproximationScheme::updateApproximationScheme().
|
protectedinherited |
If true, the threshold convergence is enabled.
Definition at line 393 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::disableEpsilon(), gum::ApproximationScheme::enableEpsilon(), gum::ApproximationScheme::isEnabledEpsilon(), and gum::ApproximationScheme::setEpsilon().
|
protectedinherited |
If true, the maximum iterations stopping criterion is enabled.
Definition at line 411 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::disableMaxIter(), gum::ApproximationScheme::enableMaxIter(), gum::ApproximationScheme::isEnabledMaxIter(), and gum::ApproximationScheme::setMaxIter().
|
protectedinherited |
If true, the timeout is enabled.
Definition at line 405 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::disableMaxTime(), gum::ApproximationScheme::enableMaxTime(), gum::ApproximationScheme::isEnabledMaxTime(), and gum::ApproximationScheme::setMaxTime().
|
protectedinherited |
If true, the minimal threshold for epsilon rate is enabled.
Definition at line 399 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::disableMinEpsilonRate(), gum::ApproximationScheme::enableMinEpsilonRate(), gum::ApproximationScheme::isEnabledMinEpsilonRate(), and gum::ApproximationScheme::setMinEpsilonRate().
|
protectedinherited |
Threshold for convergence.
Definition at line 390 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::epsilon(), and gum::ApproximationScheme::setEpsilon().
|
protectedinherited |
The scheme history, used only if verbosity == true.
Definition at line 387 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::history(), and gum::ApproximationScheme::initApproximationScheme().
|
protectedinherited |
Last epsilon value.
Definition at line 372 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme().
|
protectedinherited |
The maximum iterations.
Definition at line 408 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::maxIter(), and gum::ApproximationScheme::setMaxIter().
|
protectedinherited |
The timeout.
Definition at line 402 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::maxTime(), and gum::ApproximationScheme::setMaxTime().
|
protectedinherited |
Threshold for the epsilon rate.
Definition at line 396 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::minEpsilonRate(), and gum::ApproximationScheme::setMinEpsilonRate().
|
protectedinherited |
Checking criteria frequency.
Definition at line 417 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::periodSize(), gum::ApproximationScheme::setPeriodSize(), and gum::ApproximationScheme::startOfPeriod().
|
protectedinherited |
The timer.
Definition at line 381 of file approximationScheme.h.
Referenced by gum::learning::Miic::_initiation(), gum::learning::Miic::_iteration(), gum::learning::Miic::_orientation_3off2(), gum::learning::Miic::_orientation_latents(), gum::learning::Miic::_orientation_miic(), gum::ApproximationScheme::_stopScheme(), gum::ApproximationScheme::continueApproximationScheme(), gum::ApproximationScheme::currentTime(), gum::ApproximationScheme::initApproximationScheme(), and gum::learning::Miic::learnMixedStructure().
|
protectedinherited |
If true, verbosity is enabled.
Definition at line 420 of file approximationScheme.h.
Referenced by gum::ApproximationScheme::setVerbosity(), and gum::ApproximationScheme::verbosity().
Progression, error and time.
Definition at line 59 of file IApproximationSchemeConfiguration.h.
Referenced by gum::learning::Miic::_initiation(), gum::learning::Miic::_iteration(), gum::learning::Miic::_orientation_3off2(), gum::learning::Miic::_orientation_latents(), gum::learning::Miic::_orientation_miic(), gum::ApproximationScheme::continueApproximationScheme(), and gum::learning::genericBNLearner::distributeProgress().
|
inherited |
Criteria messageApproximationScheme.
Definition at line 62 of file IApproximationSchemeConfiguration.h.
Referenced by gum::ApproximationScheme::_stopScheme(), and gum::learning::genericBNLearner::distributeStop().