aGrUM  0.16.0
gum::prm::GroundedInference< GUM_SCALAR > Class Template Referenceabstract

<agrum/PRM/groundedInference.h> More...

#include <groundedInference.h>

+ Inheritance diagram for gum::prm::GroundedInference< GUM_SCALAR >:
+ Collaboration diagram for gum::prm::GroundedInference< GUM_SCALAR >:

Public Member Functions

Constructor & destructor.
 GroundedInference (const PRM< GUM_SCALAR > &prm, const PRMSystem< GUM_SCALAR > &system)
 Default constructor. More...
 
virtual ~GroundedInference ()
 Destructor. More...
 
Getters & setters.
MarginalTargetedInference< GUM_SCALAR > & getBNInference ()
 Returns the bayesnet inference engine used by this class. More...
 
void setBNInference (MarginalTargetedInference< GUM_SCALAR > *bn_inf)
 Defines the bayesnet inference engine used by this class. More...
 
virtual std::string name () const
 Returns the bayesnet inference engine used by this class. More...
 
Query methods.
void marginal (const Chain &chain, Potential< GUM_SCALAR > &m)
 Compute the marginal of the formal attribute pointed by chain and stores it in m. More...
 
void joint (const std::vector< Chain > &chains, Potential< GUM_SCALAR > &j)
 Compute the joint probability of the formals attributes pointed by chains and stores it in m. More...
 
Evidence handling.
EMapevidence (const PRMInstance< GUM_SCALAR > &i)
 Returns EMap of evidences over i. More...
 
EMapevidence (const PRMInstance< GUM_SCALAR > *i)
 Returns EMap of evidences over i. More...
 
const EMapevidence (const PRMInstance< GUM_SCALAR > &i) const
 Returns EMap of evidences over i. More...
 
const EMapevidence (const PRMInstance< GUM_SCALAR > *i) const
 Returns EMap of evidences over i. More...
 
bool hasEvidence (const PRMInstance< GUM_SCALAR > &i) const
 Returns true if i has evidence. More...
 
bool hasEvidence (const PRMInstance< GUM_SCALAR > *i) const
 Returns EMap of evidences over i. More...
 
bool hasEvidence (const Chain &chain) const
 Returns true if i has evidence on PRMAttribute<GUM_SCALAR> a. More...
 
bool hasEvidence () const
 Returns true if i has evidence on PRMAttribute<GUM_SCALAR> a. More...
 
void addEvidence (const Chain &chain, const Potential< GUM_SCALAR > &p)
 Add an evidence to the given instance's elt. More...
 
void removeEvidence (const Chain &chain)
 Remove evidence on the given instance's elt. More...
 
void clearEvidence ()
 Remove all evidences. More...
 

Public Types

typedef std::pair< const PRMInstance< GUM_SCALAR > *, const PRMAttribute< GUM_SCALAR > *> Chain
 Code alias. More...
 
typedef NodeProperty< const Potential< GUM_SCALAR > *> EMap
 Code alias. More...
 
typedef NodeProperty< const Potential< GUM_SCALAR > *>::iterator_safe EMapIterator
 Code alias. More...
 
typedef NodeProperty< const Potential< GUM_SCALAR > *>::const_iterator_safe EMapConstIterator
 Code alias. More...
 

Protected Member Functions

Private evidence handling methods and members.
virtual void _evidenceAdded (const typename PRMInference< GUM_SCALAR >::Chain &chain)
 This method is called whenever an evidence is added, but AFTER any processing made by PRMInference. More...
 
virtual void _evidenceRemoved (const typename PRMInference< GUM_SCALAR >::Chain &chain)
 This method is called whenever an evidence is removed, but BEFORE any processing made by PRMInference. More...
 
virtual void _marginal (const typename PRMInference< GUM_SCALAR >::Chain &chain, Potential< GUM_SCALAR > &m)
 Generic method to compute the marginal of given element. More...
 
virtual void _joint (const std::vector< typename PRMInference< GUM_SCALAR >::Chain > &queries, Potential< GUM_SCALAR > &j)
 Generic method to compute the marginal of given element. More...
 

Protected members.

virtual void _evidenceAdded (const Chain &chain)=0
 This method is called whenever an evidence is added, but AFTER any processing made by PRMInference. More...
 
virtual void _evidenceRemoved (const Chain &chain)=0
 This method is called whenever an evidence is removed, but BEFORE any processing made by PRMInference. More...
 
virtual void _marginal (const Chain &chain, Potential< GUM_SCALAR > &m)=0
 Generic method to compute the marginal of given element. More...
 
virtual void _joint (const std::vector< Chain > &queries, Potential< GUM_SCALAR > &j)=0
 Generic method to compute the marginal of given element. More...
 
PRM< GUM_SCALAR > const * _prm
 The PRM<GUM_SCALAR> on which inference is done. More...
 
PRMSystem< GUM_SCALAR > const * _sys
 The Model on which inference is done. More...
 

Detailed Description

template<typename GUM_SCALAR>
class gum::prm::GroundedInference< GUM_SCALAR >

<agrum/PRM/groundedInference.h>

This class is used to realise grounded inference in a PRM<GUM_SCALAR>.

The best way to build this class is to use the static creation methods.

Definition at line 47 of file groundedInference.h.

Member Typedef Documentation

◆ Chain

template<typename GUM_SCALAR>
typedef std::pair< const PRMInstance< GUM_SCALAR >*, const PRMAttribute< GUM_SCALAR >* > gum::prm::PRMInference< GUM_SCALAR >::Chain
inherited

Code alias.

Definition at line 57 of file PRMInference.h.

◆ EMap

template<typename GUM_SCALAR>
typedef NodeProperty< const Potential< GUM_SCALAR >* > gum::prm::PRMInference< GUM_SCALAR >::EMap
inherited

Code alias.

Definition at line 60 of file PRMInference.h.

◆ EMapConstIterator

template<typename GUM_SCALAR>
typedef NodeProperty< const Potential< GUM_SCALAR >* >::const_iterator_safe gum::prm::PRMInference< GUM_SCALAR >::EMapConstIterator
inherited

Code alias.

Definition at line 69 of file PRMInference.h.

◆ EMapIterator

template<typename GUM_SCALAR>
typedef NodeProperty< const Potential< GUM_SCALAR >* >::iterator_safe gum::prm::PRMInference< GUM_SCALAR >::EMapIterator
inherited

Code alias.

Definition at line 65 of file PRMInference.h.

Constructor & Destructor Documentation

◆ GroundedInference() [1/2]

template<typename GUM_SCALAR >
INLINE gum::prm::GroundedInference< GUM_SCALAR >::GroundedInference ( const PRM< GUM_SCALAR > &  prm,
const PRMSystem< GUM_SCALAR > &  system 
)

Default constructor.

Definition at line 89 of file groundedInference_tpl.h.

90  :
91  PRMInference< GUM_SCALAR >(prm, system),
92  __inf(0) {
93  GUM_CONSTRUCTOR(GroundedInference);
94  }
MarginalTargetedInference< GUM_SCALAR > * __inf
The bayesnet inference engine used by this class.
GroundedInference(const PRM< GUM_SCALAR > &prm, const PRMSystem< GUM_SCALAR > &system)
Default constructor.

◆ ~GroundedInference()

template<typename GUM_SCALAR >
gum::prm::GroundedInference< GUM_SCALAR >::~GroundedInference ( )
virtual

Destructor.

Definition at line 36 of file groundedInference_tpl.h.

36  {
37  GUM_DESTRUCTOR(GroundedInference);
38 
39  if (__inf != nullptr) delete __inf;
40 
41  if (!__obs.empty())
42  for (const auto pot : __obs)
43  // We used const ptrs only because of
44  // MarginalTargetedInference::addEvidence()
45  // requires it
46  delete const_cast< Potential< GUM_SCALAR >* >(pot);
47  }
MarginalTargetedInference< GUM_SCALAR > * __inf
The bayesnet inference engine used by this class.
GroundedInference(const PRM< GUM_SCALAR > &prm, const PRMSystem< GUM_SCALAR > &system)
Default constructor.
List< const Potential< GUM_SCALAR > *> __obs

◆ GroundedInference() [2/2]

template<typename GUM_SCALAR >
INLINE gum::prm::GroundedInference< GUM_SCALAR >::GroundedInference ( const GroundedInference< GUM_SCALAR > &  source)
private

Copy constructor.

Definition at line 97 of file groundedInference_tpl.h.

References GUM_ERROR, and gum::prm::GroundedInference< GUM_SCALAR >::operator=().

98  :
99  PRMInference< GUM_SCALAR >(source),
100  __inf(0) {
101  GUM_CONS_CPY(GroundedInference);
102  GUM_ERROR(FatalError, "illegal to copy constructor");
103  }
MarginalTargetedInference< GUM_SCALAR > * __inf
The bayesnet inference engine used by this class.
GroundedInference(const PRM< GUM_SCALAR > &prm, const PRMSystem< GUM_SCALAR > &system)
Default constructor.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the call graph for this function:

Member Function Documentation

◆ _evidenceAdded() [1/2]

template<typename GUM_SCALAR >
void gum::prm::GroundedInference< GUM_SCALAR >::_evidenceAdded ( const typename PRMInference< GUM_SCALAR >::Chain chain)
protectedvirtual

This method is called whenever an evidence is added, but AFTER any processing made by PRMInference.

Definition at line 50 of file groundedInference_tpl.h.

References gum::MultiDimDecorator< GUM_SCALAR >::add(), gum::MultiDimDecorator< GUM_SCALAR >::get(), gum::Instantiation::inc(), gum::prm::PRMInference< GUM_SCALAR >::name(), gum::MultiDimDecorator< GUM_SCALAR >::set(), and gum::Instantiation::setFirst().

51  {
52  Potential< GUM_SCALAR >* bn_obs = new Potential< GUM_SCALAR >();
53  // Retrieving the BN's variable
54  std::stringstream var_name;
55  var_name << chain.first->name() << "." << chain.second->safeName();
56  bn_obs->add(__inf->BN().variableFromName(var_name.str()));
57  // Retrievin the PRM<GUM_SCALAR>'s evidence and copying it in bn_obs
58  const Potential< GUM_SCALAR >* prm_obs =
59  this->evidence(chain.first)[chain.second->id()];
60  Instantiation i(*bn_obs), j(*prm_obs);
61 
62  for (i.setFirst(), j.setFirst(); !i.end(); i.inc(), j.inc()) {
63  bn_obs->set(i, prm_obs->get(j));
64  }
65 
66  __obs.insert(bn_obs);
67  }
MarginalTargetedInference< GUM_SCALAR > * __inf
The bayesnet inference engine used by this class.
EMap & evidence(const PRMInstance< GUM_SCALAR > &i)
Returns EMap of evidences over i.
List< const Potential< GUM_SCALAR > *> __obs
+ Here is the call graph for this function:

◆ _evidenceAdded() [2/2]

template<typename GUM_SCALAR>
virtual void gum::prm::PRMInference< GUM_SCALAR >::_evidenceAdded ( const Chain chain)
protectedpure virtualinherited

This method is called whenever an evidence is added, but AFTER any processing made by PRMInference.

Implemented in gum::prm::SVE< GUM_SCALAR >, and gum::prm::SVED< GUM_SCALAR >.

◆ _evidenceRemoved() [1/2]

template<typename GUM_SCALAR >
void gum::prm::GroundedInference< GUM_SCALAR >::_evidenceRemoved ( const typename PRMInference< GUM_SCALAR >::Chain chain)
protectedvirtual

This method is called whenever an evidence is removed, but BEFORE any processing made by PRMInference.

Definition at line 70 of file groundedInference_tpl.h.

References gum::MultiDimDecorator< GUM_SCALAR >::erase(), and gum::prm::PRMInference< GUM_SCALAR >::name().

71  {
72  std::stringstream var_name;
73  var_name << chain.first->name() << "." << chain.second->safeName();
74  const DiscreteVariable& var = __inf->BN().variableFromName(var_name.str());
75 
76  for (auto iter = __obs.beginSafe(); iter != __obs.endSafe();
77  ++iter) { // safe iterator needed here
78  if ((**iter).contains(var)) {
79  __inf->eraseEvidence(var_name.str());
80  const Potential< GUM_SCALAR >* e = *iter;
81  __obs.erase(iter);
82  delete e;
83  break;
84  }
85  }
86  }
MarginalTargetedInference< GUM_SCALAR > * __inf
The bayesnet inference engine used by this class.
List< const Potential< GUM_SCALAR > *> __obs
+ Here is the call graph for this function:

◆ _evidenceRemoved() [2/2]

template<typename GUM_SCALAR>
virtual void gum::prm::PRMInference< GUM_SCALAR >::_evidenceRemoved ( const Chain chain)
protectedpure virtualinherited

This method is called whenever an evidence is removed, but BEFORE any processing made by PRMInference.

Implemented in gum::prm::SVE< GUM_SCALAR >, and gum::prm::SVED< GUM_SCALAR >.

◆ _joint() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::prm::GroundedInference< GUM_SCALAR >::_joint ( const std::vector< typename PRMInference< GUM_SCALAR >::Chain > &  queries,
Potential< GUM_SCALAR > &  j 
)
protectedvirtual

Generic method to compute the marginal of given element.

Parameters
queriesSet of pairs of PRMInstance and PRMAttribute.
jCPF filled with the joint probability of queries. It is initialized properly.

Definition at line 152 of file groundedInference_tpl.h.

References GUM_ERROR.

154  {
155  GUM_ERROR(FatalError, "not yet implemented");
156  }
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ _joint() [2/2]

template<typename GUM_SCALAR>
virtual void gum::prm::PRMInference< GUM_SCALAR >::_joint ( const std::vector< Chain > &  queries,
Potential< GUM_SCALAR > &  j 
)
protectedpure virtualinherited

Generic method to compute the marginal of given element.

Parameters
queriesSet of pairs of PRMInstance<GUM_SCALAR> and PRMAttribute<GUM_SCALAR>.
jCPF filled with the joint probability of queries. It is initialized properly.

Implemented in gum::prm::SVE< GUM_SCALAR >, and gum::prm::SVED< GUM_SCALAR >.

◆ _marginal() [1/2]

template<typename GUM_SCALAR >
INLINE void gum::prm::GroundedInference< GUM_SCALAR >::_marginal ( const typename PRMInference< GUM_SCALAR >::Chain chain,
Potential< GUM_SCALAR > &  m 
)
protectedvirtual

Generic method to compute the marginal of given element.

Parameters
chain
mCPF filled with the marginal of elt. It is initialized properly.

Definition at line 130 of file groundedInference_tpl.h.

References gum::prm::GroundedInference< GUM_SCALAR >::__inf, gum::prm::GroundedInference< GUM_SCALAR >::__obs, GUM_ERROR, and gum::prm::PRMInference< GUM_SCALAR >::name().

132  {
133  if (__inf == 0) {
134  GUM_ERROR(OperationNotAllowed, "no inference engine defined");
135  }
136 
137  std::stringstream sBuff;
138 
139  if (!__obs.empty()) {
140  for (auto e : __obs) {
141  try {
142  __inf->addEvidence(*e);
143  } catch (InvalidArgument&) { __inf->chgEvidence(*e); }
144  }
145  }
146 
147  sBuff << chain.first->name() << "." << chain.second->safeName();
148  m = __inf->posterior(__inf->BN().idFromName(sBuff.str()));
149  }
MarginalTargetedInference< GUM_SCALAR > * __inf
The bayesnet inference engine used by this class.
List< const Potential< GUM_SCALAR > *> __obs
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the call graph for this function:

◆ _marginal() [2/2]

template<typename GUM_SCALAR>
virtual void gum::prm::PRMInference< GUM_SCALAR >::_marginal ( const Chain chain,
Potential< GUM_SCALAR > &  m 
)
protectedpure virtualinherited

Generic method to compute the marginal of given element.

Parameters
chain
mCPF filled with the marginal of elt. It is initialized properly.

Implemented in gum::prm::SVE< GUM_SCALAR >, and gum::prm::SVED< GUM_SCALAR >.

◆ addEvidence()

template<typename GUM_SCALAR>
void gum::prm::PRMInference< GUM_SCALAR >::addEvidence ( const Chain chain,
const Potential< GUM_SCALAR > &  p 
)
inherited

Add an evidence to the given instance's elt.

Parameters
chainThe variable being observed.
pThe Potential added (by copy) as evidence.
Exceptions
NotFoundRaised if elt does not belong to i.
OperationNotAllowedRaised if p is inconsistent with elt.

Definition at line 109 of file PRMInference_tpl.h.

Referenced by gum::prm::o3prmr::O3prmrInterpreter::observe().

110  {
111  if (chain.first->exists(chain.second->id())) {
112  if ((p.nbrDim() != 1) || (!p.contains(chain.second->type().variable())))
113  GUM_ERROR(OperationNotAllowed,
114  "illegal evidence for the given PRMAttribute.");
115 
116  Potential< GUM_SCALAR >* e = new Potential< GUM_SCALAR >();
117  e->add(chain.second->type().variable());
118  Instantiation i(*e);
119 
120  for (i.setFirst(); !i.end(); i.inc())
121  e->set(i, p.get(i));
122 
123  PRMInference< GUM_SCALAR >::EMap& emap = __EMap(chain.first);
124 
125  if (emap.exists(chain.second->id())) {
126  delete emap[chain.second->id()];
127  emap[chain.second->id()] = e;
128  } else {
129  emap.insert(chain.second->id(), e);
130  }
131 
132  _evidenceAdded(chain);
133  } else {
134  GUM_ERROR(NotFound,
135  "the given PRMAttribute does not belong to this "
136  "Instance<GUM_SCALAR>.");
137  }
138  }
virtual void _evidenceAdded(const Chain &chain)=0
This method is called whenever an evidence is added, but AFTER any processing made by PRMInference...
EMap & __EMap(const PRMInstance< GUM_SCALAR > *i)
Private getter over __evidences, if necessary creates an EMap for i.
NodeProperty< const Potential< GUM_SCALAR > *> EMap
Code alias.
Definition: PRMInference.h:60
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ clearEvidence()

template<typename GUM_SCALAR >
void gum::prm::PRMInference< GUM_SCALAR >::clearEvidence ( )
inherited

Remove all evidences.

Definition at line 36 of file PRMInference_tpl.h.

36  {
37  for (const auto& elt : __evidences) {
38  for (const auto& elt2 : *elt.second)
39  delete elt2.second;
40 
41  delete elt.second;
42  }
43 
44  __evidences.clear();
45  }
HashTable< const PRMInstance< GUM_SCALAR > *, EMap *> __evidences
Mapping of evidence over PRMInstance<GUM_SCALAR>&#39;s nodes.
Definition: PRMInference.h:235

◆ evidence() [1/4]

template<typename GUM_SCALAR>
INLINE PRMInference< GUM_SCALAR >::EMap & gum::prm::PRMInference< GUM_SCALAR >::evidence ( const PRMInstance< GUM_SCALAR > &  i)
inherited

Returns EMap of evidences over i.

Exceptions
NotFoundif i has no evidence.

Definition at line 156 of file PRMInference_tpl.h.

Referenced by gum::prm::SVED< GUM_SCALAR >::__insertEvidence(), gum::prm::SVE< GUM_SCALAR >::__insertEvidence(), gum::prm::StructuredInference< GUM_SCALAR >::__reduceAloneInstances(), and gum::prm::StructuredInference< GUM_SCALAR >::_marginal().

156  {
157  try {
158  return *(__evidences[&i]);
159  } catch (NotFound&) {
160  GUM_ERROR(NotFound, "this instance has no evidence.");
161  }
162  }
HashTable< const PRMInstance< GUM_SCALAR > *, EMap *> __evidences
Mapping of evidence over PRMInstance<GUM_SCALAR>&#39;s nodes.
Definition: PRMInference.h:235
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ evidence() [2/4]

template<typename GUM_SCALAR>
INLINE PRMInference< GUM_SCALAR >::EMap & gum::prm::PRMInference< GUM_SCALAR >::evidence ( const PRMInstance< GUM_SCALAR > *  i)
inherited

Returns EMap of evidences over i.

Exceptions
NotFoundif i has no evidence.

Definition at line 177 of file PRMInference_tpl.h.

177  {
178  try {
179  return *(__evidences[i]);
180  } catch (NotFound&) {
181  GUM_ERROR(NotFound, "this instance has no evidence.");
182  }
183  }
HashTable< const PRMInstance< GUM_SCALAR > *, EMap *> __evidences
Mapping of evidence over PRMInstance<GUM_SCALAR>&#39;s nodes.
Definition: PRMInference.h:235
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ evidence() [3/4]

template<typename GUM_SCALAR>
INLINE const PRMInference< GUM_SCALAR >::EMap & gum::prm::PRMInference< GUM_SCALAR >::evidence ( const PRMInstance< GUM_SCALAR > &  i) const
inherited

Returns EMap of evidences over i.

Exceptions
NotFoundif i has no evidence.

Definition at line 166 of file PRMInference_tpl.h.

167  {
168  try {
169  return *(__evidences[&i]);
170  } catch (NotFound&) {
171  GUM_ERROR(NotFound, "this instance has no evidence.");
172  }
173  }
HashTable< const PRMInstance< GUM_SCALAR > *, EMap *> __evidences
Mapping of evidence over PRMInstance<GUM_SCALAR>&#39;s nodes.
Definition: PRMInference.h:235
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ evidence() [4/4]

template<typename GUM_SCALAR>
INLINE const PRMInference< GUM_SCALAR >::EMap & gum::prm::PRMInference< GUM_SCALAR >::evidence ( const PRMInstance< GUM_SCALAR > *  i) const
inherited

Returns EMap of evidences over i.

Exceptions
NotFoundif i has no evidence.

Definition at line 187 of file PRMInference_tpl.h.

188  {
189  try {
190  return *(__evidences[i]);
191  } catch (NotFound&) {
192  GUM_ERROR(NotFound, "this instance has no evidence.");
193  }
194  }
HashTable< const PRMInstance< GUM_SCALAR > *, EMap *> __evidences
Mapping of evidence over PRMInstance<GUM_SCALAR>&#39;s nodes.
Definition: PRMInference.h:235
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ getBNInference()

template<typename GUM_SCALAR >
INLINE MarginalTargetedInference< GUM_SCALAR > & gum::prm::GroundedInference< GUM_SCALAR >::getBNInference ( )

Returns the bayesnet inference engine used by this class.

Returns
the bayesnet inference engine used by this class.
Exceptions
NotFoundRaised if no inference engine have been defined for this class.

Definition at line 113 of file groundedInference_tpl.h.

References gum::prm::GroundedInference< GUM_SCALAR >::__inf, and GUM_ERROR.

113  {
114  if (__inf != 0) {
115  return *__inf;
116  } else {
117  GUM_ERROR(NotFound, "the inference engine is not yet defined");
118  }
119  }
MarginalTargetedInference< GUM_SCALAR > * __inf
The bayesnet inference engine used by this class.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ hasEvidence() [1/4]

template<typename GUM_SCALAR>
INLINE bool gum::prm::PRMInference< GUM_SCALAR >::hasEvidence ( const PRMInstance< GUM_SCALAR > &  i) const
inherited

Returns true if i has evidence.

Definition at line 197 of file PRMInference_tpl.h.

Referenced by gum::prm::o3prmr::O3prmrInterpreter::observe(), and gum::prm::o3prmr::O3prmrInterpreter::unobserve().

198  {
199  return __evidences.exists(&i);
200  }
HashTable< const PRMInstance< GUM_SCALAR > *, EMap *> __evidences
Mapping of evidence over PRMInstance<GUM_SCALAR>&#39;s nodes.
Definition: PRMInference.h:235
+ Here is the caller graph for this function:

◆ hasEvidence() [2/4]

template<typename GUM_SCALAR>
INLINE bool gum::prm::PRMInference< GUM_SCALAR >::hasEvidence ( const PRMInstance< GUM_SCALAR > *  i) const
inherited

Returns EMap of evidences over i.

Definition at line 203 of file PRMInference_tpl.h.

204  {
205  return __evidences.exists(i);
206  }
HashTable< const PRMInstance< GUM_SCALAR > *, EMap *> __evidences
Mapping of evidence over PRMInstance<GUM_SCALAR>&#39;s nodes.
Definition: PRMInference.h:235

◆ hasEvidence() [3/4]

template<typename GUM_SCALAR>
INLINE bool gum::prm::PRMInference< GUM_SCALAR >::hasEvidence ( const Chain chain) const
inherited

Returns true if i has evidence on PRMAttribute<GUM_SCALAR> a.

Definition at line 209 of file PRMInference_tpl.h.

209  {
210  return (hasEvidence(chain.first))
211  ? evidence(chain.first).exists(chain.second->id())
212  : false;
213  }
EMap & evidence(const PRMInstance< GUM_SCALAR > &i)
Returns EMap of evidences over i.
bool exists(const Key &key) const
Checks whether there exists an element with a given key in the hashtable.
bool hasEvidence() const
Returns true if i has evidence on PRMAttribute<GUM_SCALAR> a.

◆ hasEvidence() [4/4]

template<typename GUM_SCALAR>
INLINE bool gum::prm::PRMInference< GUM_SCALAR >::hasEvidence ( ) const
inherited

Returns true if i has evidence on PRMAttribute<GUM_SCALAR> a.

Definition at line 216 of file PRMInference_tpl.h.

Referenced by gum::prm::StructuredInference< GUM_SCALAR >::__insertNodeInElimLists(), gum::prm::StructuredInference< GUM_SCALAR >::__reduceAloneInstances(), and gum::prm::StructuredInference< GUM_SCALAR >::_marginal().

216  {
217  return (__evidences.size() != (Size)0);
218  }
HashTable< const PRMInstance< GUM_SCALAR > *, EMap *> __evidences
Mapping of evidence over PRMInstance<GUM_SCALAR>&#39;s nodes.
Definition: PRMInference.h:235
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:48
+ Here is the caller graph for this function:

◆ joint()

template<typename GUM_SCALAR>
INLINE void gum::prm::PRMInference< GUM_SCALAR >::joint ( const std::vector< Chain > &  chains,
Potential< GUM_SCALAR > &  j 
)
inherited

Compute the joint probability of the formals attributes pointed by chains and stores it in m.

Parameters
chainsA Set of strings of the form instance.attribute.
jAn empty CPF which will be filed by the joint probability over chains.
Exceptions
NotFoundRaised if some chain in chains does not point to a formal attribute.
OperationNotAllowedRaise if m is not empty.

Definition at line 263 of file PRMInference_tpl.h.

265  {
266  if (j.nbrDim() > 0) {
267  GUM_ERROR(OperationNotAllowed, "the given Potential is not empty.");
268  }
269 
270  for (auto chain = chains.begin(); chain != chains.end(); ++chain) {
271  j.add(chain->second->type().variable());
272  }
273 
274  _joint(chains, j);
275  }
virtual void _joint(const std::vector< Chain > &queries, Potential< GUM_SCALAR > &j)=0
Generic method to compute the marginal of given element.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ marginal()

template<typename GUM_SCALAR>
INLINE void gum::prm::PRMInference< GUM_SCALAR >::marginal ( const Chain chain,
Potential< GUM_SCALAR > &  m 
)
inherited

Compute the marginal of the formal attribute pointed by chain and stores it in m.

Parameters
chainA string of the form instance.attribute.
mAn empty CPF which will be filed by the marginal of chain.
Exceptions
NotFoundRaised if chain is invalid.
WrongTypeRaised if chain does not point to an PRMAttribute<GUM_SCALAR>.
OperationNotAllowedRaise if m is not empty.

Definition at line 234 of file PRMInference_tpl.h.

Referenced by gum::prm::o3prmr::O3prmrInterpreter::query().

236  {
237  if (m.nbrDim() > 0) {
238  GUM_ERROR(OperationNotAllowed, "the given Potential is not empty.");
239  }
240 
241  if (hasEvidence(chain)) {
242  m.add(chain.second->type().variable());
243  const Potential< GUM_SCALAR >& e =
244  *(evidence(chain.first)[chain.second->id()]);
245  Instantiation i(m), j(e);
246 
247  for (i.setFirst(), j.setFirst(); !i.end(); i.inc(), j.inc())
248  m.set(i, e.get(j));
249  } else {
250  if (chain.second != &(chain.first->get(chain.second->safeName()))) {
251  typename PRMInference< GUM_SCALAR >::Chain good_chain = std::make_pair(
252  chain.first, &(chain.first->get(chain.second->safeName())));
253  m.add(good_chain.second->type().variable());
254  _marginal(good_chain, m);
255  } else {
256  m.add(chain.second->type().variable());
257  _marginal(chain, m);
258  }
259  }
260  }
EMap & evidence(const PRMInstance< GUM_SCALAR > &i)
Returns EMap of evidences over i.
virtual void _marginal(const Chain &chain, Potential< GUM_SCALAR > &m)=0
Generic method to compute the marginal of given element.
bool hasEvidence() const
Returns true if i has evidence on PRMAttribute<GUM_SCALAR> a.
std::pair< const PRMInstance< GUM_SCALAR > *, const PRMAttribute< GUM_SCALAR > *> Chain
Code alias.
Definition: PRMInference.h:57
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ name()

template<typename GUM_SCALAR >
INLINE std::string gum::prm::GroundedInference< GUM_SCALAR >::name ( ) const
virtual

Returns the bayesnet inference engine used by this class.

Returns
the bayesnet inference engine used by this class.
Exceptions
NotFoundRaised if no inference engine have been defined for this class.

Implements gum::prm::PRMInference< GUM_SCALAR >.

Definition at line 159 of file groundedInference_tpl.h.

159  {
160  return "grounded inference";
161  }

◆ operator=()

template<typename GUM_SCALAR >
INLINE GroundedInference< GUM_SCALAR > & gum::prm::GroundedInference< GUM_SCALAR >::operator= ( const GroundedInference< GUM_SCALAR > &  source)
private

Copy operator.

Definition at line 107 of file groundedInference_tpl.h.

References GUM_ERROR.

Referenced by gum::prm::GroundedInference< GUM_SCALAR >::GroundedInference().

107  {
108  GUM_ERROR(FatalError, "illegal call to copy operator");
109  }
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55
+ Here is the caller graph for this function:

◆ removeEvidence()

template<typename GUM_SCALAR >
INLINE void gum::prm::PRMInference< GUM_SCALAR >::removeEvidence ( const Chain chain)
inherited

Remove evidence on the given instance's elt.

Parameters
chainThe variable being observed.
Exceptions
NotFoundRaised if the given names are not found.
WrongTypeRaised if the elt is not an PRMAttribute<GUM_SCALAR>.

Definition at line 221 of file PRMInference_tpl.h.

Referenced by gum::prm::o3prmr::O3prmrInterpreter::unobserve().

221  {
222  try {
223  if (__EMap(chain.first).exists(chain.second->id())) {
224  _evidenceRemoved(chain);
225  delete __EMap(chain.first)[chain.second->id()];
226  __EMap(chain.first).erase(chain.second->id());
227  }
228  } catch (NotFound&) {
229  // Ok, we are only removing
230  }
231  }
void erase(const Key &key)
Removes a given element from the hash table.
bool exists(const Key &key) const
Checks whether there exists an element with a given key in the hashtable.
virtual void _evidenceRemoved(const Chain &chain)=0
This method is called whenever an evidence is removed, but BEFORE any processing made by PRMInference...
EMap & __EMap(const PRMInstance< GUM_SCALAR > *i)
Private getter over __evidences, if necessary creates an EMap for i.
+ Here is the caller graph for this function:

◆ setBNInference()

template<typename GUM_SCALAR >
INLINE void gum::prm::GroundedInference< GUM_SCALAR >::setBNInference ( MarginalTargetedInference< GUM_SCALAR > *  bn_inf)

Defines the bayesnet inference engine used by this class.

The inference engine is given to this class, it will be deleted when ~GroundedInference() is called.

Parameters
bn_infThe bayesnet inference engine used by this class.
Exceptions
OperationNotAllowedIf bn_inf does not inference over the SystemBayesNet of this class.
Todo:
MarginalTargetedInference should have copy constructors.

Definition at line 122 of file groundedInference_tpl.h.

References gum::prm::GroundedInference< GUM_SCALAR >::__inf.

123  {
124  if (__inf != 0) { delete __inf; }
125 
126  __inf = bn_inf;
127  }
MarginalTargetedInference< GUM_SCALAR > * __inf
The bayesnet inference engine used by this class.

Member Data Documentation

◆ __inf

template<typename GUM_SCALAR>
MarginalTargetedInference< GUM_SCALAR >* gum::prm::GroundedInference< GUM_SCALAR >::__inf
private

◆ __obs

template<typename GUM_SCALAR>
List< const Potential< GUM_SCALAR >* > gum::prm::GroundedInference< GUM_SCALAR >::__obs
private

◆ _prm

template<typename GUM_SCALAR>
PRM< GUM_SCALAR > const* gum::prm::PRMInference< GUM_SCALAR >::_prm
protectedinherited

◆ _sys


The documentation for this class was generated from the following files: