aGrUM  0.16.0
gum::BijectionImplementation< T1, T2, Alloc, Gen > Class Template Reference

A non scalar implementation of a Bijection. More...

#include <agrum/core/bijection.h>

+ Collaboration diagram for gum::BijectionImplementation< T1, T2, Alloc, Gen >:

Public Member Functions

template<typename OtherAlloc >
INLINE void __copy (const HashTable< T1, T2 *, OtherAlloc > &f2s)
 
template<typename OtherAlloc >
INLINE BijectionImplementation (const BijectionImplementation< T1, T2, OtherAlloc, Gen > &toCopy)
 
template<typename OtherAlloc >
INLINE BijectionImplementation< T1, T2, Alloc, Gen > & operator= (const BijectionImplementation< T1, T2, OtherAlloc, Gen > &toCopy)
 
template<typename... Args>
INLINE void emplace (Args &&... args)
 
template<typename OtherAlloc >
INLINE void __copy (const HashTable< T1, T2, OtherAlloc > &f2s)
 
template<typename T1, typename T2, typename Alloc>
INLINE BijectionImplementation (const BijectionImplementation< T1, T2, Alloc, true > &toCopy)
 
template<typename OtherAlloc >
INLINE BijectionImplementation (const BijectionImplementation< T1, T2, OtherAlloc, true > &toCopy)
 
template<typename T1, typename T2, typename Alloc>
INLINE BijectionImplementation (BijectionImplementation< T1, T2, Alloc, true > &&toCopy) noexcept
 
template<typename OtherAlloc >
INLINE BijectionImplementation< T1, T2, Alloc, true > & operator= (const BijectionImplementation< T1, T2, OtherAlloc, true > &toCopy)
 
Constructors/destructors
 ~BijectionImplementation ()
 Destructor. More...
 
Accessors / Modifiers
const T1 & first (const T2 &second) const
 Returns the first value of a pair given its second value. More...
 
const T1 & firstWithDefault (const T2 &second, const T1 &default_val) const
 Returns the first value of a pair given its second value or default_val if second is unfound. More...
 
const T2 & second (const T1 &first) const
 Returns the second value of a pair given its first value. More...
 
const T2 & secondWithDefault (const T1 &second, const T2 &default_val) const
 Returns the second value of a pair given its first value or default_val if first is unfound. More...
 
bool existsFirst (const T1 &first) const
 Returns true if first is the first element in a pair in the gum::Bijection. More...
 
bool existsSecond (const T2 &second) const
 Returns true if second is the second element in a pair in the gum::Bijection. More...
 
void insert (const T1 &first, const T2 &second)
 Inserts a new association in the gum::Bijection. More...
 
void insert (T1 &&first, T2 &&second)
 Inserts a new association in the gum::Bijection. More...
 
template<typename... Args>
void emplace (Args &&... args)
 Emplace a new element in the gum::Bijection. More...
 
void clear ()
 Removes all the associations from the gum::Bijection. More...
 
bool empty () const noexcept
 Returns true if the gum::Bijection doesn't contain any association. More...
 
Size size () const noexcept
 Returns the number of associations stored within the gum::Bijection. More...
 
void eraseFirst (const T1 &first)
 Erases an association containing the given first element. More...
 
void eraseSecond (const T2 &second)
 Erases an association containing the given second element. More...
 
std::string toString () const
 Returns a friendly representatin of the gum::Bijection. More...
 
Fine tuning
Size capacity () const noexcept
 Returns the number of hashtables slots used. More...
 
void resize (Size new_size)
 Manually resize the gum::Bijection. More...
 
void setResizePolicy (const bool new_policy) noexcept
 Change the gum::Bijection resizing policy. More...
 
bool resizePolicy () const noexcept
 Returns true if the resize policy is automatic. More...
 

Public Types

using type1_type = T1
 types for STL compliance More...
 
using type1_reference = T1 &
 types for STL compliance More...
 
using type1_const_reference = const T1 &
 types for STL compliance More...
 
using type1_pointer = T1 *
 types for STL compliance More...
 
using type1_const_pointer = const T1 *
 types for STL compliance More...
 
using type2_type = T2
 types for STL compliance More...
 
using type2_reference = T2 &
 types for STL compliance More...
 
using type2_const_reference = const T2 &
 types for STL compliance More...
 
using type2_pointer = T2 *
 types for STL compliance More...
 
using type2_const_pointer = const T2 *
 types for STL compliance More...
 
using size_type = std::size_t
 types for STL compliance More...
 
using difference_type = std::ptrdiff_t
 types for STL compliance More...
 
using allocator_type = Alloc
 types for STL compliance More...
 
using iterator = BijectionIterator< T1, T2 >
 types for STL compliance More...
 
using const_iterator = BijectionIterator< T1, T2 >
 types for STL compliance More...
 
using iterator_safe = BijectionIteratorSafe< T1, T2 >
 types for STL compliance More...
 
using const_iterator_safe = BijectionIteratorSafe< T1, T2 >
 types for STL compliance More...
 
using allocator12_type = typename Alloc::template rebind< std::pair< T1, T2 *> >::other
 types for STL compliance More...
 
using allocator21_type = typename Alloc::template rebind< std::pair< T2, T1 *> >::other
 types for STL compliance More...
 

Friends

class BijectionIteratorSafe< T1, T2 >
 a friend to speed-up accesses More...
 
class BijectionIterator< T1, T2 >
 a friend to speed-up accesses More...
 
class Bijection< T1, T2, Alloc >
 a friend to speed-up accesses More...
 
template<typename TT1 , typename TT2 , typename A , bool >
class BijectionImplementation
 a friend to speed-up accesses More...
 

Iterators

iterator begin () const
 Returns the unsafe iterator at the beginning of the gum::Bijection. More...
 
const_iterator cbegin () const
 Returns the constant unsafe iterator at the beginning of the gum::Bjection. More...
 
const iteratorend () const noexcept
 Returns the unsafe iterator at the end of the gum::Bijection. More...
 
const const_iteratorcend () const noexcept
 Returns the constant iterator at the end of the gum::Bijection. More...
 
iterator_safe beginSafe () const
 Returns the safe iterator at the beginning of the gum::Bijection. More...
 
const_iterator_safe cbeginSafe () const
 Returns the constant safe iterator at the begining of the gum::Bijection. More...
 
const iterator_safeendSafe () const noexcept
 Returns the safe iterator at the end of the gum::Bijection. More...
 
const const_iterator_safecendSafe () const noexcept
 Returns the constant safe iterator at the end of the gum::Bijection. More...
 
static const iterator_safeendSafe4Statics ()
 Returns the safe end iterator for other classes' statics. More...
 
static const iteratorend4Statics ()
 Returns the unsafe end iterator for other classes' statics. More...
 

Detailed Description

template<typename T1, typename T2, typename Alloc, bool Gen>
class gum::BijectionImplementation< T1, T2, Alloc, Gen >

A non scalar implementation of a Bijection.

This class is designed for modeling a gum::Bijection between two sets, the idea is following :

  • We want to create a gum::Bjection relation between type T1 and type T2,
  • For x in T1, there exists only one y in T2 associated to x,
  • For y in T2, there exists only one x in T1 associated to y,
  • The user inserts all the (x, y) associations and can search efficiently the values thus associated.
Template Parameters
T1The first type of elements in the gum::Bjection.
T2The second type of elements in the gum::Bjection.
AllocThe allocator used for allocating memory.
GenIf true, this will be replaced by a implementation omptimized for non-scalar types.

Definition at line 85 of file bijection.h.

Member Typedef Documentation

◆ allocator12_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::allocator12_type = typename Alloc::template rebind< std::pair< T1, T2* > >::other

types for STL compliance

Definition at line 107 of file bijection.h.

◆ allocator21_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::allocator21_type = typename Alloc::template rebind< std::pair< T2, T1* > >::other

types for STL compliance

Definition at line 109 of file bijection.h.

◆ allocator_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::allocator_type = Alloc

types for STL compliance

Definition at line 101 of file bijection.h.

◆ const_iterator

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::const_iterator = BijectionIterator< T1, T2 >

types for STL compliance

Definition at line 103 of file bijection.h.

◆ const_iterator_safe

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::const_iterator_safe = BijectionIteratorSafe< T1, T2 >

types for STL compliance

Definition at line 105 of file bijection.h.

◆ difference_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::difference_type = std::ptrdiff_t

types for STL compliance

Definition at line 100 of file bijection.h.

◆ HashTable12

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::HashTable12 = HashTable< T1, T2*, allocator12_type >
private

Alias for more readable code.

Definition at line 641 of file bijection.h.

◆ HashTable21

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::HashTable21 = HashTable< T2, T1*, allocator21_type >
private

Alias for more readable code.

Definition at line 642 of file bijection.h.

◆ iterator

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::iterator = BijectionIterator< T1, T2 >

types for STL compliance

Definition at line 102 of file bijection.h.

◆ iterator_safe

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::iterator_safe = BijectionIteratorSafe< T1, T2 >

types for STL compliance

Definition at line 104 of file bijection.h.

◆ size_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::size_type = std::size_t

types for STL compliance

Definition at line 99 of file bijection.h.

◆ type1_const_pointer

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_const_pointer = const T1*

types for STL compliance

Definition at line 93 of file bijection.h.

◆ type1_const_reference

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_const_reference = const T1&

types for STL compliance

Definition at line 91 of file bijection.h.

◆ type1_pointer

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_pointer = T1*

types for STL compliance

Definition at line 92 of file bijection.h.

◆ type1_reference

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_reference = T1&

types for STL compliance

Definition at line 90 of file bijection.h.

◆ type1_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type1_type = T1

types for STL compliance

Definition at line 89 of file bijection.h.

◆ type2_const_pointer

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_const_pointer = const T2*

types for STL compliance

Definition at line 98 of file bijection.h.

◆ type2_const_reference

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_const_reference = const T2&

types for STL compliance

Definition at line 96 of file bijection.h.

◆ type2_pointer

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_pointer = T2*

types for STL compliance

Definition at line 97 of file bijection.h.

◆ type2_reference

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_reference = T2&

types for STL compliance

Definition at line 95 of file bijection.h.

◆ type2_type

template<typename T1, typename T2, typename Alloc, bool Gen>
using gum::BijectionImplementation< T1, T2, Alloc, Gen >::type2_type = T2

types for STL compliance

Definition at line 94 of file bijection.h.

Constructor & Destructor Documentation

◆ BijectionImplementation() [1/9]

template<typename T1 , typename T2 , typename Alloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc >::BijectionImplementation ( Size  size,
bool  resize_policy 
)
private

Default constructor: creates a gum::Bijection without any association.

Parameters
sizeThe Bijection starting size.
resize_policyIf true, the gum::Bijection will resize itself automatically.

Definition at line 84 of file bijection_tpl.h.

85  :
86  // warning: below, we create the internal hashTables with a key
87  // uniqueness
88  // policy set to false because we will do the uniqueness tests ourselves
89  // (this
90  // will speed-up the process)
91  __firstToSecond(size, resize_policy, false),
92  __secondToFirst(size, resize_policy, false) {
93  GUM_CONSTRUCTOR(BijectionImplementation);
94 
95  // make sure the end() iterator is constructed properly
96  end4Statics();
98  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651
static const iterator_safe & endSafe4Statics()
Returns the safe end iterator for other classes&#39; statics.
Definition: bijection_tpl.h:42
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
Size size() const noexcept
Returns the number of associations stored within the gum::Bijection.
static const iterator & end4Statics()
Returns the unsafe end iterator for other classes&#39; statics.
Definition: bijection_tpl.h:50
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ BijectionImplementation() [2/9]

template<typename T1, typename T2, typename Alloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc >::BijectionImplementation ( std::initializer_list< std::pair< T1, T2 > >  list)
private

Initializer list constructor.

Parameters
listThe initialize list.

Definition at line 102 of file bijection_tpl.h.

103  :
104  __firstToSecond(Size(list.size()) / 2, true, false),
105  __secondToFirst(Size(list.size()) / 2, true, false) {
106  GUM_CONSTRUCTOR(BijectionImplementation);
107 
108  for (const auto& elt : list) {
109  insert(elt.first, elt.second);
110  }
111 
112  // make sure the end() iterator is constructed properly
113  end4Statics();
114  endSafe4Statics();
115  }
void insert(const T1 &first, const T2 &second)
Inserts a new association in the gum::Bijection.
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651
static const iterator_safe & endSafe4Statics()
Returns the safe end iterator for other classes&#39; statics.
Definition: bijection_tpl.h:42
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:48
static const iterator & end4Statics()
Returns the unsafe end iterator for other classes&#39; statics.
Definition: bijection_tpl.h:50
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ BijectionImplementation() [3/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, Alloc, Gen > &  toCopy)
private

Copy constructor.

Parameters
toCopyBijection to copy.

Definition at line 119 of file bijection_tpl.h.

120  :
121  __firstToSecond(toCopy.__firstToSecond.capacity(), true, false),
122  __secondToFirst(toCopy.__secondToFirst.capacity(), true, false) {
123  GUM_CONS_CPY(BijectionImplementation);
124  __copy(toCopy.__firstToSecond);
125  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651
void __copy(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ BijectionImplementation() [4/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, OtherAlloc, Gen > &  toCopy)
private

Generalized copy constructor.

Parameters
toCopyBijection to copy.

◆ BijectionImplementation() [5/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( BijectionImplementation< T1, T2, Alloc, Gen > &&  from)
privatenoexcept

Move constructor.

Parameters
fromBijection to move.

Definition at line 140 of file bijection_tpl.h.

141  :
142  __firstToSecond(std::move(from.__firstToSecond)),
143  __secondToFirst(std::move(from.__secondToFirst)) {
144  GUM_CONS_MOV(BijectionImplementation);
145  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ ~BijectionImplementation()

template<typename T1 , typename T2 , typename Alloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc >::~BijectionImplementation ( )

Destructor.

Definition at line 150 of file bijection_tpl.h.

150  {
151  GUM_DESTRUCTOR(BijectionImplementation);
152  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651

◆ BijectionImplementation() [6/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, OtherAlloc, Gen > &  toCopy)

Definition at line 130 of file bijection_tpl.h.

131  :
132  __firstToSecond(toCopy.__firstToSecond.capacity(), true, false),
133  __secondToFirst(toCopy.__secondToFirst.capacity(), true, false) {
134  GUM_CONS_CPY(BijectionImplementation);
135  __copy(toCopy.__firstToSecond);
136  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651
void __copy(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ BijectionImplementation() [7/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename T1, typename T2, typename Alloc>
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, Alloc, true > &  toCopy)

Definition at line 578 of file bijection_tpl.h.

579  :
580  __firstToSecond(toCopy.__firstToSecond.capacity(), true, false),
581  __secondToFirst(toCopy.__secondToFirst.capacity(), true, false) {
582  GUM_CONS_CPY(BijectionImplementation);
583  __copy(toCopy.__firstToSecond);
584  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651
void __copy(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ BijectionImplementation() [8/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( const BijectionImplementation< T1, T2, OtherAlloc, true > &  toCopy)

Definition at line 589 of file bijection_tpl.h.

590  :
591  __firstToSecond(toCopy.__firstToSecond.capacity(), true, false),
592  __secondToFirst(toCopy.__secondToFirst.capacity(), true, false) {
593  GUM_CONS_CPY(BijectionImplementation);
594  __copy(toCopy.__firstToSecond);
595  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651
void __copy(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ BijectionImplementation() [9/9]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename T1, typename T2, typename Alloc>
INLINE gum::BijectionImplementation< T1, T2, Alloc, Gen >::BijectionImplementation ( BijectionImplementation< T1, T2, Alloc, true > &&  toCopy)
noexcept

Definition at line 599 of file bijection_tpl.h.

600  :
601  __firstToSecond(std::move(toCopy.__firstToSecond)),
602  __secondToFirst(std::move(toCopy.__secondToFirst)) {
603  GUM_CONS_MOV(BijectionImplementation);
604  }
friend class BijectionImplementation
a friend to speed-up accesses
Definition: bijection.h:651
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

Member Function Documentation

◆ __copy() [1/3]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc, Gen >::__copy ( const HashTable< T1, T2 *, OtherAlloc > &  f2s)

Definition at line 58 of file bijection_tpl.h.

59  {
60  // parse f2s and perform copies
61  for (auto iter = f2s.cbegin(); iter != f2s.cend(); ++iter) {
62  typename HashTable12::value_type* val1 =
63  &(__firstToSecond.insert(iter.key(), nullptr));
64  typename HashTable21::value_type* val2;
65 
66  try {
67  val2 = &(__secondToFirst.insert(*(iter.val()), nullptr));
68  } catch (...) {
69  __firstToSecond.erase(iter.key());
70  throw;
71  }
72 
73  val1->second = &(const_cast< T2& >(val2->first));
74  val2->second = &(const_cast< T1& >(val1->first));
75  }
76 
77  // note that __iter_end is actually a constant, whatever we add/remove
78  // to/from __firstToSecond. As a consequence, it need not be updated
79  // after __copy
80  }
void erase(const Key &key)
Removes a given element from the hash table.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
std::pair< const T1, T2 * > value_type
Definition: hashTable.h:685
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.

◆ __copy() [2/3]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc, Gen >::__copy ( const HashTable< T1, T2, OtherAlloc > &  f2s)

Definition at line 557 of file bijection_tpl.h.

558  {
559  // parse f2s and perform copies
560  for (auto iter = f2s.cbegin(); iter != f2s.cend(); ++iter) {
561  __firstToSecond.insert(iter.key(), iter.val());
562 
563  try {
564  __secondToFirst.insert(iter.val(), iter.key());
565  } catch (...) {
566  __firstToSecond.erase(iter.key());
567  throw;
568  }
569  }
570 
571  // note that __iter_end is actually a constant, whatever we add/remove
572  // to/from __firstToSecond. As a consequence, it need not be updated
573  // after __copy
574  }
void erase(const Key &key)
Removes a given element from the hash table.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.

◆ __copy() [3/3]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
void gum::BijectionImplementation< T1, T2, Alloc, Gen >::__copy ( const HashTable< T1, T2 *, OtherAlloc > &  source)
private

A function that performs a complete copy of another gum::Bijection.

Warning
this function assumes that "this" is an empty gum::Bijection. If it is not the case, use function clear() before calling __copy.
Parameters
sourceThe source from copied into this gum::Bijection.
Template Parameters
OtherAllocThe allocator used by source.

◆ __insert() [1/2]

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE BijectionImplementation< T1, T2, Alloc, Gen >::HashTable12::value_type * gum::BijectionImplementation< T1, T2, Alloc, Gen >::__insert ( const T1 &  first,
const T2 &  second 
)
private

Inserts a new association into the gum::Bijection.

Parameters
firstThe first object in the association.
secondThe second object in the association.
Returns
Returns a pointer toward the inserted association.

Definition at line 310 of file bijection_tpl.h.

311  {
312  // check the uniqueness property
314  GUM_ERROR(DuplicateElement,
315  "the bijection contains an element with the same couple ("
316  << first << "," << second << ")");
317  }
318 
319  // insert copies of first and second
320  typename HashTable12::value_type* val1 =
321  &(__firstToSecond.insert(first, nullptr));
322  typename HashTable21::value_type* val2;
323 
324  try {
325  val2 = &(__secondToFirst.insert(second, nullptr));
326  } catch (...) {
328  throw;
329  }
330 
331  val1->second = &(const_cast< T2& >(val2->first));
332  val2->second = &(const_cast< T1& >(val1->first));
333 
334  return val1;
335  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
void erase(const Key &key)
Removes a given element from the hash table.
bool existsSecond(const T2 &second) const
Returns true if second is the second element in a pair in the gum::Bijection.
bool existsFirst(const T1 &first) const
Returns true if first is the first element in a pair in the gum::Bijection.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
std::pair< const T1, T2 * > value_type
Definition: hashTable.h:685
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ __insert() [2/2]

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE BijectionImplementation< T1, T2, Alloc, Gen >::HashTable12::value_type * gum::BijectionImplementation< T1, T2, Alloc, Gen >::__insert ( T1 &&  first,
T2 &&  second 
)
private

Inserts a new association into the gum::Bijection.

Parameters
firstThe first object in the association.
secondThe second object in the association.
Returns
Returns a pointer toward the inserted association.

Definition at line 341 of file bijection_tpl.h.

342  {
343  // check the uniqueness property
345  GUM_ERROR(DuplicateElement,
346  "the bijection contains an element with the same couple ("
347  << first << "," << second << ")");
348  }
349 
350  // insert copies of first and second
351  typename HashTable12::value_type* val1 =
352  &(__firstToSecond.insert(std::move(first), nullptr));
353  typename HashTable21::value_type* val2;
354 
355  try {
356  val2 = &(__secondToFirst.insert(std::move(second), nullptr));
357  } catch (...) {
358  __firstToSecond.erase(val1->first);
359  throw;
360  }
361 
362  val1->second = &(const_cast< T2& >(val2->first));
363  val2->second = &(const_cast< T1& >(val1->first));
364 
365  return val1;
366  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
void erase(const Key &key)
Removes a given element from the hash table.
bool existsSecond(const T2 &second) const
Returns true if second is the second element in a pair in the gum::Bijection.
bool existsFirst(const T1 &first) const
Returns true if first is the first element in a pair in the gum::Bijection.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
std::pair< const T1, T2 * > value_type
Definition: hashTable.h:685
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
value_type & insert(const Key &key, const Val &val)
Adds a new element (actually a copy of this element) into the hash table.
#define GUM_ERROR(type, msg)
Definition: exceptions.h:55

◆ begin()

template<typename T1 , typename T2 , typename Alloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >::iterator gum::BijectionImplementation< T1, T2, Alloc >::begin ( ) const

Returns the unsafe iterator at the beginning of the gum::Bijection.

Unsafe iterators are a little bit faster than safe ones. But this speed is at the expense of safety: if you point to an element that is deleted, then try to access it or trying to operate a ++ will most certainly result in a segfault. So, Unsafe iterators should only be used to parse gum::Bjection where no element is ever deleted. If unsure, prefer using safe iterators.

Note that the notion of a beginning/end of a gum::Bjection is rather fuzzy. What is important here is that for an instance bij of this class:

for(iterator iter = bij.begin(); iter != bij.end(); ++iter) {
// will parse all the associations.
}

Definition at line 217 of file bijection_tpl.h.

217  {
218  return BijectionIterator< T1, T2 >{*this};
219  }
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:648

◆ beginSafe()

template<typename T1 , typename T2 , typename Alloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >::iterator_safe gum::BijectionImplementation< T1, T2, Alloc >::beginSafe ( ) const

Returns the safe iterator at the beginning of the gum::Bijection.

Safe iterators are slightly slower than unsafe iterators. However, they guarantee that no segmentation fault can ever occur when trying to access the element they point to or when applying a ++ operator. When no element of the gum::Bijection is to be deleted during the parsing of the gum::Bijection (as for instance when you parse the gum::Bijection to display its content), prefer using the unsafe iterators, which are a little bit faster and cannot, in this case, produce segfaults.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.beginSafe(); iter != bij.endSafe(); ++iter) {
// loops will parse all the associations
}

Definition at line 248 of file bijection_tpl.h.

Referenced by gum::ExactTerminalNodePolicy< GUM_SCALAR >::beginValues().

248  {
249  return BijectionIteratorSafe< T1, T2 >{*this};
250  }
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:647
+ Here is the caller graph for this function:

◆ capacity()

template<typename T1 , typename T2 , typename Alloc >
INLINE Size gum::BijectionImplementation< T1, T2, Alloc >::capacity ( ) const
noexcept

Returns the number of hashtables slots used.

Returns
Returns the number of hashtables slots used.

Definition at line 451 of file bijection_tpl.h.

Referenced by gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::capacity(), and gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::operator=().

452  {
453  return __firstToSecond.capacity();
454  }
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
Size capacity() const noexcept
Returns the number of slots in the &#39;nodes&#39; vector of the hashtable.
+ Here is the caller graph for this function:

◆ cbegin()

template<typename T1 , typename T2 , typename Alloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >::const_iterator gum::BijectionImplementation< T1, T2, Alloc >::cbegin ( ) const

Returns the constant unsafe iterator at the beginning of the gum::Bjection.

Unsafe iterators are a little bit faster than safe ones. But this speed is at the expense of safety: if you point to an element that is deleted, then try to access it or trying to operate a ++ will most certainly result in a segfault. So, Unsafe iterators should only be used to parse gum::Bjection where no element is ever deleted. If unsure, prefer using safe iterators.

Note that the notion of a beginning/end of a gum::Bjection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.cbegin(); iter != bij.cend(); ++iter) {
// will parse all the association
}

Definition at line 224 of file bijection_tpl.h.

224  {
225  return BijectionIterator< T1, T2 >{*this};
226  }
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:648

◆ cbeginSafe()

template<typename T1 , typename T2 , typename Alloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >::const_iterator_safe gum::BijectionImplementation< T1, T2, Alloc >::cbeginSafe ( ) const

Returns the constant safe iterator at the begining of the gum::Bijection.

Safe iterators are slightly slower than unsafe iterators. However, they guarantee that no segmentation fault can ever occur when trying to access the element they point to or when applying a ++ operator. When no element of the gum::Bijection is to be deleted during the parsing of the gum::Bijection (as for instance when you parse the bijection to display its content), prefer using the unsafe iterators, which are a little bit faster and cannot, in this case, produce segfaults.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.cbeginSafe(); iter != bij.cendSafe(); ++iter) {
// loops will parse all the associations
}

Definition at line 256 of file bijection_tpl.h.

256  {
257  return BijectionIteratorSafe< T1, T2 >{*this};
258  }
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:647

◆ cend()

template<typename T1 , typename T2 , typename Alloc >
INLINE const BijectionImplementation< T1, T2, Alloc, true >::const_iterator & gum::BijectionImplementation< T1, T2, Alloc >::cend ( ) const
noexcept

Returns the constant iterator at the end of the gum::Bijection.

Unsafe iterators are a little bit faster than safe ones. But this speed is at the expense of safety: if you point to an element that is deleted, then try to access it or trying to operate a ++ will most certainly result in a segfault. So, Unsafe iterators should only be used to parse gum::Bijection where no element is ever deleted. If unsure, prefer using safe iterators.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.cbegin(); iter != bij.cend(); ++iter) {
// loops will parse all the associations
}

Definition at line 240 of file bijection_tpl.h.

240  {
241  return *(reinterpret_cast< const BijectionIterator< T1, T2 >* >(
243  }
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:648
static const BijectionIterator< int, int > * __BijectionIterEnd
The unsafe iterator used by everyone.
Definition: bijection.h:1337

◆ cendSafe()

template<typename T1 , typename T2 , typename Alloc >
INLINE const BijectionImplementation< T1, T2, Alloc, true >::const_iterator_safe & gum::BijectionImplementation< T1, T2, Alloc >::cendSafe ( ) const
noexcept

Returns the constant safe iterator at the end of the gum::Bijection.

Safe iterators are slightly slower than unsafe iterators. However, they guarantee that no segmentation fault can ever occur when trying to access the element they point to or when applying a ++ operator. When no element of the gum::Bijection is to be deleted during the parsing of the gum::Bijection (as for instance when you parse the gum::Bijection to display its content), prefer using the unsafe iterators, which are a little bit faster and cannot, in this case, produce segfaults.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.cbeginSafe(); iter != bij.cendSafe(); ++iter) {
// loops will parse all the associations
}

Definition at line 273 of file bijection_tpl.h.

273  {
274  return *(reinterpret_cast< const BijectionIteratorSafe< T1, T2 >* >(
276  }
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:647
static const BijectionIteratorSafe< int, int > * __BijectionIterEndSafe
The safe iterator used by everyone.
Definition: bijection.h:1334

◆ clear()

template<typename T1 , typename T2 , typename Alloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::clear ( )

Removes all the associations from the gum::Bijection.

Definition at line 156 of file bijection_tpl.h.

Referenced by gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::BijectionImplementation(), gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::clear(), and gum::ExactTerminalNodePolicy< GUM_SCALAR >::clearAllTerminalNodes().

156  {
159  // note that __iter_end is actually a constant, whatever we add/remove
160  // to/from __firstToSecond. As a consequence, it need not be updated
161  // after the clear's
162  }
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
void clear()
Removes all the elements in the hash table.
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
+ Here is the caller graph for this function:

◆ emplace() [1/2]

template<typename T1 , typename T2 , typename Alloc >
template<typename... Args>
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::emplace ( Args &&...  args)

Definition at line 408 of file bijection_tpl.h.

408  {
409  std::pair< T1, T2 > new_elt(std::forward< Args >(args)...);
410  __insert(std::move(new_elt.first), std::move(new_elt.second));
411  }
HashTable12::value_type * __insert(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ emplace() [2/2]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename... Args>
void gum::BijectionImplementation< T1, T2, Alloc, Gen >::emplace ( Args &&...  args)

Emplace a new element in the gum::Bijection.

The emplace method allows to construct directly an element of type Key by passing to its constructor all the arguments it needs.

Parameters
argsthe arguments passed to the constructor
Exceptions
DuplicateElementexception is thrown if the association already exists

◆ empty()

template<typename T1 , typename T2 , typename Alloc >
INLINE bool gum::BijectionImplementation< T1, T2, Alloc >::empty ( ) const
noexcept

Returns true if the gum::Bijection doesn't contain any association.

Returns
Returns true if the gum::Bijection doesn't contain any association.

Definition at line 415 of file bijection_tpl.h.

Referenced by gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::empty(), and gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::operator=().

416  {
417  GUM_ASSERT(__firstToSecond.empty() == __secondToFirst.empty());
418  return __firstToSecond.empty();
419  }
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
bool empty() const noexcept
Indicates whether the hash table is empty.
+ Here is the caller graph for this function:

◆ end()

template<typename T1 , typename T2 , typename Alloc >
INLINE const BijectionImplementation< T1, T2, Alloc, true >::iterator & gum::BijectionImplementation< T1, T2, Alloc >::end ( ) const
noexcept

Returns the unsafe iterator at the end of the gum::Bijection.

Unsafe iterators are a little bit faster than safe ones. But this speed is at the expense of safety: if you point to an element that is deleted, then try to access it or trying to operate a ++ will most certainly result in a segfault. So, Unsafe iterators should only be used to parse gum::Bijection where no element is ever deleted. If unsure, prefer using safe iterators.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for(iterator iter = bij.begin(); iter != bij.end(); ++iter) {
// loops will parse all the associations
}

Definition at line 231 of file bijection_tpl.h.

231  {
232  return *(reinterpret_cast< const BijectionIterator< T1, T2 >* >(
234  }
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:648
static const BijectionIterator< int, int > * __BijectionIterEnd
The unsafe iterator used by everyone.
Definition: bijection.h:1337

◆ end4Statics()

template<typename T1 , typename T2 , typename Alloc >
const BijectionIterator< T1, T2 > & gum::BijectionImplementation< T1, T2, Alloc >::end4Statics ( )
static

Returns the unsafe end iterator for other classes' statics.

To reduce the gum::Bijection memory consumption (which are heavily used in aGrUM) while allowing fast for loops, end iterators are created just once as a static member of a non-template gum::Bijection. While this scheme is efficient and it works quite effectively, it has a drawback: other classes with static members using the BijectionImplementation::end() iterator may fail to work due to the well known "static initialization order fiasco" (see Marshall Cline's C++ FAQ for more details about this C++ feature).

So what is the problem? Consider a class, say X, containing a gum::Bijection that stores all its elements in a convenient way. To reduce memory consumption, X::end iterator is a static member that is initialized with a gum::Bijection::end iterator. If the compiler decides to initialize X::end before initializing gum::Bijection::end, then X::end will be in an incoherent state.

Unfortunately, we cannot know for sure in which order static members will be initialized (the order is a compiler's decision). Hence, we shall enfore the fact that gum::Bijection::end is initialized before X::end. Using method gum::Bijection::end4Statics will ensure this fact: it uses the C++ "construct on first use" idiom (see the C++ FAQ) that ensures that the order fiasco is avoided. More precisely, end4Statics uses a global variable that is the very end iterator used by all gum::Bijection. Now, this induces a small overhead. So, we also provide a gum::Bijection::end() method that returns the gum::Bijection::end iterator without this small overhead, but assuming that function end4Statics has already been called once (which is always the case) when a gum::Bijection has been created.

So, to summarize: when initializing static members use end4Statics() and in all the other cases, use end().

Definition at line 50 of file bijection_tpl.h.

50  {
51  return *(reinterpret_cast< const BijectionIterator< T1, T2 >* >(
53  }
static const BijectionIterator< int, int > * end4Statics()
Creates (if needed) and returns the iterator __BijectionIterEnd.
friend class BijectionIterator< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:648

◆ endSafe()

template<typename T1 , typename T2 , typename Alloc >
INLINE const BijectionImplementation< T1, T2, Alloc, true >::iterator_safe & gum::BijectionImplementation< T1, T2, Alloc >::endSafe ( ) const
noexcept

Returns the safe iterator at the end of the gum::Bijection.

Safe iterators are slightly slower than unsafe iterators. However, they guarantee that no segmentation fault can ever occur when trying to access the element they point to or when applying a ++ operator. When no element of the gum::Bijection is to be deleted during the parsing of the gum::Bijection (as for instance when you parse the gum::Bijection to display its content), prefer using the unsafe iterators, which are a little bit faster and cannot, in this case, produce segfaults.

Note that the notion of a beginning/end of a gum::Bijection is rather fuzzy. What is important here is that for an instance bij of this class:

for (iterator iter = bij.beginSafe(); iter != bij.endSafe(); ++iter) {
// loops will parse all the associations
}

Definition at line 264 of file bijection_tpl.h.

Referenced by gum::ExactTerminalNodePolicy< GUM_SCALAR >::hasValue().

264  {
265  return *(reinterpret_cast< const BijectionIteratorSafe< T1, T2 >* >(
267  }
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:647
static const BijectionIteratorSafe< int, int > * __BijectionIterEndSafe
The safe iterator used by everyone.
Definition: bijection.h:1334
+ Here is the caller graph for this function:

◆ endSafe4Statics()

template<typename T1 , typename T2 , typename Alloc >
const BijectionIteratorSafe< T1, T2 > & gum::BijectionImplementation< T1, T2, Alloc >::endSafe4Statics ( )
static

Returns the safe end iterator for other classes' statics.

To reduce the gum::Bijection memory consumption (which are heavily used in aGrUM) while allowing fast for loops, end iterators are created just once as a static member of a non-template gum::Bijection. While this scheme is efficient and it works quite effectively, it has a drawback: other classes with static members using the BijectionImplementation::end() iterator may fail to work due to the well known "static initialization order fiasco" (see Marshall Cline's C++ FAQ for more details about this C++ feature).

So what is the problem? Consider a class, say X, containing a gum::Bijection that stores all its elements in a convenient way. To reduce memory consumption, X::end iterator is a static member that is initialized with a gum::Bijection::end iterator. If the compiler decides to initialize X::end before initializing gum::Bijection::end, then X::end will be in an incoherent state.

Unfortunately, we cannot know for sure in which order static members will be initialized (the order is a compiler's decision). Hence, we shall enfore the fact that gum::Bijection::end is initialized before X::end. Using method gum::Bijection::end4Statics will ensure this fact: it uses the C++ "construct on first use" idiom (see the C++ FAQ) that ensures that the order fiasco is avoided. More precisely, end4Statics uses a global variable that is the very end iterator used by all gum::Bijection. Now, this induces a small overhead. So, we also provide a gum::Bijection::end() method that returns the gum::Bijection::end iterator without this small overhead, but assuming that function end4Statics has already been called once (which is always the case) when a gum::Bijection has been created.

So, to summarize: when initializing static members use endSafe4Statics() and in all the other cases, use endSafe().

Definition at line 42 of file bijection_tpl.h.

42  {
43  return *(reinterpret_cast< const BijectionIteratorSafe< T1, T2 >* >(
45  }
static const BijectionIteratorSafe< int, int > * endSafe4Statics()
Creates (if needed) and returns the iterator __BijectionIterEndSafe.
friend class BijectionIteratorSafe< T1, T2 >
a friend to speed-up accesses
Definition: bijection.h:647

◆ eraseFirst()

template<typename T1, typename T2 , typename Alloc , bool Gen>
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::eraseFirst ( const T1 &  first)

Erases an association containing the given first element.

If the element cannot be found, nothing is done. In particular, no exception is raised.

Parameters
firstThe first element of a pair in the gum::Bijection.

Definition at line 432 of file bijection_tpl.h.

Referenced by gum::prm::StructuredInference< GUM_SCALAR >::__removeNode(), and gum::ExactTerminalNodePolicy< GUM_SCALAR >::eraseTerminalNode().

432  {
433  try {
435  __firstToSecond.erase(first);
436  } catch (NotFound&) {}
437  }
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
void erase(const Key &key)
Removes a given element from the hash table.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
+ Here is the caller graph for this function:

◆ eraseSecond()

template<typename T1 , typename T2, typename Alloc , bool Gen>
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::eraseSecond ( const T2 &  second)

Erases an association containing the given second element.

If the element cannot be found, nothing is done. In particular, no exception is raised.

Parameters
secondThe second element of a pair in the gum::Bijection.

Definition at line 442 of file bijection_tpl.h.

442  {
443  try {
445  __secondToFirst.erase(second);
446  } catch (NotFound&) {}
447  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
void erase(const Key &key)
Removes a given element from the hash table.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ existsFirst()

template<typename T1, typename T2 , typename Alloc , bool Gen>
INLINE bool gum::BijectionImplementation< T1, T2, Alloc >::existsFirst ( const T1 &  first) const

Returns true if first is the first element in a pair in the gum::Bijection.

Parameters
firstThe element tested for existence.
Returns
Returns true if first is in the first element in a pair in the gum::Bijection.

Definition at line 294 of file bijection_tpl.h.

Referenced by gum::prm::StructuredInference< GUM_SCALAR >::__removeNode(), and gum::ExactTerminalNodePolicy< GUM_SCALAR >::existsTerminalNodeWithId().

295  {
296  return __firstToSecond.exists(first);
297  }
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
bool exists(const Key &key) const
Checks whether there exists an element with a given key in the hashtable.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
+ Here is the caller graph for this function:

◆ existsSecond()

template<typename T1 , typename T2, typename Alloc , bool Gen>
INLINE bool gum::BijectionImplementation< T1, T2, Alloc >::existsSecond ( const T2 &  second) const

Returns true if second is the second element in a pair in the gum::Bijection.

Parameters
secondThe element tested for existence.
Returns
Returns true if second is in the second element in a pair in the gum::Bijection.

Definition at line 301 of file bijection_tpl.h.

Referenced by gum::ExactTerminalNodePolicy< GUM_SCALAR >::existsTerminalNodeWithValue().

302  {
303  return __secondToFirst.exists(second);
304  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
bool exists(const Key &key) const
Checks whether there exists an element with a given key in the hashtable.
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
+ Here is the caller graph for this function:

◆ first()

template<typename T1 , typename T2, typename Alloc , bool Gen>
INLINE const T1 & gum::BijectionImplementation< T1, T2, Alloc >::first ( const T2 &  second) const

Returns the first value of a pair given its second value.

Parameters
secondThe second value of a pair in the gum::Bijection.
Returns
Returns the first value of a pair given its second value.
Exceptions
NotFoundRaised if the element cannot be found.

Definition at line 281 of file bijection_tpl.h.

Referenced by gum::prm::gspan::StrictSearch< GUM_SCALAR >::__buildPatternGraph(), gum::prm::ClusteredLayerGenerator< GUM_SCALAR >::__generateClass(), gum::prm::LayerGenerator< GUM_SCALAR >::__generateClasses(), gum::prm::ClusteredLayerGenerator< GUM_SCALAR >::__generateCluster(), gum::learning::genericBNLearner::Database::idFromName(), gum::ExactTerminalNodePolicy< GUM_SCALAR >::terminalNodeId(), gum::learning::BNDatabaseGenerator< GUM_SCALAR >::toDatabaseTable(), and gum::learning::BNDatabaseGenerator< GUM_SCALAR >::varOrderNames().

281  {
282  return *(__secondToFirst[second]);
283  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
+ Here is the caller graph for this function:

◆ firstWithDefault()

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE const T1 & gum::BijectionImplementation< T1, T2, Alloc >::firstWithDefault ( const T2 &  second,
const T1 &  default_val 
) const

Returns the first value of a pair given its second value or default_val if second is unfound.

Parameters
secondThe second value of a pair in the gum::Bijection.
default_valThe default value returned if second is not in the gum::Bijection.
Returns
Returns the first value of a pair given its second value or default_val if second is not in the bjection.

Definition at line 371 of file bijection_tpl.h.

372  {
373  try {
374  return first(second);
375  } catch (NotFound&) { return __insert(val, second)->first; }
376  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12::value_type * __insert(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ insert() [1/2]

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE void gum::BijectionImplementation< T1, T2, Alloc, Gen >::insert ( const T1 &  first,
const T2 &  second 
)

Inserts a new association in the gum::Bijection.

The values are added by copy.

Parameters
firstThe first element of the pair to insert.
secondThe second element of the pair to insert.
Exceptions
DuplicateElementRaised if the association already exists.

Definition at line 392 of file bijection_tpl.h.

Referenced by gum::prm::gspan::StrictSearch< GUM_SCALAR >::__buildPatternGraph(), gum::prm::StructuredInference< GUM_SCALAR >::__buildPatternGraph(), gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::__copy(), gum::prm::LayerGenerator< GUM_SCALAR >::__generateClassDag(), gum::prm::ClusteredLayerGenerator< GUM_SCALAR >::__generateClassDag(), gum::ExactTerminalNodePolicy< GUM_SCALAR >::addTerminalNode(), gum::learning::BNDatabaseGenerator< GUM_SCALAR >::BNDatabaseGenerator(), and gum::learning::genericBNLearner::Database::Database().

393  {
395  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12::value_type * __insert(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.
+ Here is the caller graph for this function:

◆ insert() [2/2]

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE void gum::BijectionImplementation< T1, T2, Alloc, Gen >::insert ( T1 &&  first,
T2 &&  second 
)

Inserts a new association in the gum::Bijection.

The values are moved in the gum::Bijection.

Parameters
firstThe first element of the pair to insert.
secondThe second element of the pair to insert.
Exceptions
DuplicateElementRaised if the association already exists.

Definition at line 399 of file bijection_tpl.h.

400  {
401  __insert(std::move(first), std::move(second));
402  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12::value_type * __insert(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ operator=() [1/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
INLINE BijectionImplementation< T1, T2, Alloc, Gen > & gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( const BijectionImplementation< T1, T2, Alloc, Gen > &  toCopy)
private

Copy operator.

Parameters
toCopyBijection to copy.
Returns
Returns the gum::Bijection in which the copy was made.

Definition at line 168 of file bijection_tpl.h.

168  {
169  // avoid self assignment
170  if (this != &toCopy) {
171  clear();
172  __copy(toCopy.__firstToSecond);
173  }
174 
175  // note that __iter_end is actually a constant, whatever we add/remove
176  // to/from __firstToSecond. As a consequence, it need not be updated
177  // after __copy
178  return *this;
179  }
void __copy(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
void clear()
Removes all the associations from the gum::Bijection.

◆ operator=() [2/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
BijectionImplementation< T1, T2, Alloc, Gen >& gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( const BijectionImplementation< T1, T2, OtherAlloc, Gen > &  toCopy)
private

Generalized copy operator.

Parameters
toCopyBijection to copy.
Returns
Returns the gum::Bijection in which the copy was made.

◆ operator=() [3/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE BijectionImplementation< T1, T2, Alloc, Gen >& gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( const BijectionImplementation< T1, T2, OtherAlloc, Gen > &  toCopy)

Definition at line 185 of file bijection_tpl.h.

186  {
187  clear();
188  __copy(toCopy.__firstToSecond);
189 
190  // note that __iter_end is actually a constant, whatever we add/remove
191  // to/from __firstToSecond. As a consequence, it need not be updated
192  // after __copy
193  return *this;
194  }
void __copy(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
void clear()
Removes all the associations from the gum::Bijection.

◆ operator=() [4/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
INLINE BijectionImplementation< T1, T2, Alloc, Gen > & gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( BijectionImplementation< T1, T2, Alloc, Gen > &&  toCopy)
private

Move operator.

Parameters
toCopyBijection to move
Returns
Returns the moved gum::Bijection in which the move was made.

Definition at line 200 of file bijection_tpl.h.

200  {
201  // avoid self assignment
202  if (this != &from) {
203  clear();
204  __firstToSecond = std::move(from.__firstToSecond);
205  __secondToFirst = std::move(from.__secondToFirst);
206  }
207 
208  // note that __iter_end is actually a constant, whatever we add/remove
209  // to/from __firstToSecond. As a consequence, it need not be updated
210  // after __copy
211  return *this;
212  }
void clear()
Removes all the associations from the gum::Bijection.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663

◆ operator=() [5/5]

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename OtherAlloc >
INLINE BijectionImplementation< T1, T2, Alloc, true >& gum::BijectionImplementation< T1, T2, Alloc, Gen >::operator= ( const BijectionImplementation< T1, T2, OtherAlloc, true > &  toCopy)

Definition at line 708 of file bijection_tpl.h.

709  {
710  clear();
711  __copy(toCopy.__firstToSecond);
712 
713  // note that __iter_end is actually a constant, whatever we add/remove
714  // to/from __firstToSecond. As a consequence, it need not be updated
715  // after __copy
716  return *this;
717  }
void __copy(const HashTable< T1, T2 *, OtherAlloc > &source)
A function that performs a complete copy of another gum::Bijection.
void clear()
Removes all the associations from the gum::Bijection.

◆ resize()

template<typename T1 , typename T2 , typename Alloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::resize ( Size  new_size)

Manually resize the gum::Bijection.

See gum::HashTable::resize(gum::Size)

Parameters
new_sizeThe gum::Bijection new size.

Definition at line 459 of file bijection_tpl.h.

Referenced by gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::operator=(), and gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::resize().

459  {
460  __firstToSecond.resize(new_size);
461  __secondToFirst.resize(new_size);
462  }
void resize(Size new_size)
Changes the number of slots in the &#39;nodes&#39; vector of the hash table.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
+ Here is the caller graph for this function:

◆ resizePolicy()

template<typename T1 , typename T2 , typename Alloc >
INLINE bool gum::BijectionImplementation< T1, T2, Alloc >::resizePolicy ( ) const
noexcept

Returns true if the resize policy is automatic.

See gum::HashTable::resizePolicy().

Returns
Returns true if the resize policy is automatic.

Definition at line 474 of file bijection_tpl.h.

Referenced by gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::operator=(), and gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::resizePolicy().

475  {
476  return __firstToSecond.resizePolicy();
477  }
bool resizePolicy() const noexcept
Returns the current resizing policy.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
+ Here is the caller graph for this function:

◆ second()

template<typename T1, typename T2 , typename Alloc , bool Gen>
INLINE const T2 & gum::BijectionImplementation< T1, T2, Alloc >::second ( const T1 &  first) const

Returns the second value of a pair given its first value.

Parameters
firstThe first value of a pair in the gum::Bijection.
Returns
Returns the second value of a pair given its first value.
Exceptions
NotFoundRaised if the element cannot be found.

Definition at line 288 of file bijection_tpl.h.

Referenced by gum::prm::ClusteredLayerGenerator< GUM_SCALAR >::__generateClass(), gum::prm::LayerGenerator< GUM_SCALAR >::__generateClassDag(), gum::prm::ClusteredLayerGenerator< GUM_SCALAR >::__generateClassDag(), gum::prm::LayerGenerator< GUM_SCALAR >::__generateClasses(), gum::prm::ClusteredLayerGenerator< GUM_SCALAR >::__generateCluster(), gum::learning::BNDatabaseGenerator< GUM_SCALAR >::__varOrderFromCSV(), gum::MultiDimBijArray< GUM_SCALAR >::MultiDimBijArray(), gum::learning::genericBNLearner::Database::nameFromId(), gum::learning::BNDatabaseGenerator< GUM_SCALAR >::setVarOrder(), and gum::ExactTerminalNodePolicy< GUM_SCALAR >::terminalNodeValue().

288  {
289  return *(__firstToSecond[first]);
290  }
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
+ Here is the caller graph for this function:

◆ secondWithDefault()

template<typename T1, typename T2, typename Alloc , bool Gen>
INLINE const T2 & gum::BijectionImplementation< T1, T2, Alloc >::secondWithDefault ( const T1 &  second,
const T2 &  default_val 
) const

Returns the second value of a pair given its first value or default_val if first is unfound.

Parameters
secondThe second value of a pair in the gum::Bijection.
default_valThe default value returned if first is not in the gum::Bijection.
Returns
Returns the second value of a pair given its first value or default_val if first is not in the bjection.

Definition at line 382 of file bijection_tpl.h.

383  {
384  try {
385  return second(first);
386  } catch (NotFound&) { return *(__insert(first, val)->second); }
387  }
const T2 & second(const T1 &first) const
Returns the second value of a pair given its first value.
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
HashTable12::value_type * __insert(const T1 &first, const T2 &second)
Inserts a new association into the gum::Bijection.

◆ setResizePolicy()

template<typename T1 , typename T2 , typename Alloc >
INLINE void gum::BijectionImplementation< T1, T2, Alloc >::setResizePolicy ( const bool  new_policy)
noexcept

Change the gum::Bijection resizing policy.

See gum::HashTable::setResizePolicy( const bool );

Parameters
new_policyIf true, the gum::Bijection will resize automatically.

Definition at line 466 of file bijection_tpl.h.

Referenced by gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::operator=(), and gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::setResizePolicy().

467  {
468  __firstToSecond.setResizePolicy(new_policy);
469  __secondToFirst.setResizePolicy(new_policy);
470  }
void setResizePolicy(const bool new_policy) noexcept
Enables the user to change dynamically the resizing policy.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
+ Here is the caller graph for this function:

◆ size()

template<typename T1 , typename T2 , typename Alloc >
INLINE Size gum::BijectionImplementation< T1, T2, Alloc >::size ( ) const
noexcept

Returns the number of associations stored within the gum::Bijection.

Returns
Returns the number of associations stored within the gum::Bijection.

Definition at line 423 of file bijection_tpl.h.

Referenced by gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::operator=(), and gum::BijectionImplementation< Idx, const std::string *, std::allocator< const std::string * >, std::is_scalar< Idx >::value &&std::is_scalar< const std::string * >::value >::size().

424  {
425  GUM_ASSERT(__firstToSecond.size() == __secondToFirst.size());
426  return __firstToSecond.size();
427  }
Size size() const noexcept
Returns the number of elements stored into the hashtable.
HashTable12 __firstToSecond
The gum::HashTable associating T2 objects to T1 objects.
Definition: bijection.h:660
HashTable21 __secondToFirst
The gum::HashTable associating T1 objects to T2 objects.
Definition: bijection.h:663
+ Here is the caller graph for this function:

◆ toString()

template<typename T1 , typename T2 , typename Alloc >
std::string gum::BijectionImplementation< T1, T2, Alloc >::toString ( ) const

Returns a friendly representatin of the gum::Bijection.

Returns
Returns a friendly representatin of the gum::Bijection.

Definition at line 481 of file bijection_tpl.h.

481  {
482  std::stringstream stream;
483  stream << "{ ";
484  bool first = true;
485 
486  for (iterator iter = begin(); iter != end(); ++iter) {
487  if (!first)
488  stream << ", ";
489  else
490  first = false;
491 
492  stream << '(' << iter.first() << " <-> " << iter.second() << ')';
493  }
494 
495  stream << " }";
496  return stream.str();
497  }
const T1 & first(const T2 &second) const
Returns the first value of a pair given its second value.
iterator begin() const
Returns the unsafe iterator at the beginning of the gum::Bijection.
BijectionIterator< T1, T2 > iterator
types for STL compliance
Definition: bijection.h:102
const iterator & end() const noexcept
Returns the unsafe iterator at the end of the gum::Bijection.

Friends And Related Function Documentation

◆ BijectionImplementation

template<typename T1, typename T2, typename Alloc, bool Gen>
template<typename TT1 , typename TT2 , typename A , bool >
friend class BijectionImplementation
friend

a friend to speed-up accesses

Definition at line 651 of file bijection.h.

◆ Bijection< T1, T2, Alloc >

template<typename T1, typename T2, typename Alloc, bool Gen>
friend class Bijection< T1, T2, Alloc >
friend

a friend to speed-up accesses

Definition at line 649 of file bijection.h.

◆ BijectionIterator< T1, T2 >

template<typename T1, typename T2, typename Alloc, bool Gen>
friend class BijectionIterator< T1, T2 >
friend

a friend to speed-up accesses

Definition at line 648 of file bijection.h.

◆ BijectionIteratorSafe< T1, T2 >

template<typename T1, typename T2, typename Alloc, bool Gen>
friend class BijectionIteratorSafe< T1, T2 >
friend

a friend to speed-up accesses

Definition at line 647 of file bijection.h.

Member Data Documentation

◆ __firstToSecond

◆ __secondToFirst

template<typename T1, typename T2, typename Alloc, bool Gen>
HashTable21 gum::BijectionImplementation< T1, T2, Alloc, Gen >::__secondToFirst
private

The documentation for this class was generated from the following files: