33 #ifndef GUM_LEARNING_GREEDY_HILL_CLIMBING_H 34 #define GUM_LEARNING_GREEDY_HILL_CLIMBING_H 39 #include <agrum/BN/BayesNet.h> 40 #include <agrum/agrum.h> 41 #include <agrum/tools/core/approximations/approximationScheme.h> 42 #include <agrum/tools/graphs/DAG.h> 106 template <
typename GRAPH_CHANGES_SELECTOR >
116 template <
typename GUM_SCALAR =
double,
117 typename GRAPH_CHANGES_SELECTOR,
118 typename PARAM_ESTIMATOR >
131 #include <agrum/BN/learning/greedyHillClimbing_tpl.h> GreedyHillClimbing(GreedyHillClimbing &&from)
move constructor
GreedyHillClimbing & operator=(GreedyHillClimbing &&from)
move operator
INLINE void emplace(Args &&... args)
BayesNet< GUM_SCALAR > learnBN(GRAPH_CHANGES_SELECTOR &selector, PARAM_ESTIMATOR &estimator, DAG initial_dag=DAG())
learns the structure and the parameters of a BN
ApproximationScheme & approximationScheme()
returns the approximation policy of the learning algorithm
DAG learnStructure(GRAPH_CHANGES_SELECTOR &selector, DAG initial_dag=DAG())
learns the structure of a Bayes net
The greedy hill climbing learning algorithm (for directed graphs)
~GreedyHillClimbing()
destructor
GreedyHillClimbing()
default constructor
Database(const std::string &filename, const BayesNet< GUM_SCALAR > &bn, const std::vector< std::string > &missing_symbols)
GreedyHillClimbing(const GreedyHillClimbing &from)
copy constructor
GreedyHillClimbing & operator=(const GreedyHillClimbing &from)
copy operator