aGrUM  0.16.0
gum::StaticTriangulation Class Referenceabstract

base class for all non-incremental triangulation methods More...

#include <staticTriangulation.h>

+ Inheritance diagram for gum::StaticTriangulation:
+ Collaboration diagram for gum::StaticTriangulation:

Public Member Functions

Accessors / Modifiers
double maxLog10CliqueDomainSize ()
 returns the max of log10DomainSize of the cliques in the junction tree. More...
 
const NodeProperty< Size > * domainSizes () const
 returns the domain sizes of the variables of the graph to be triangulated More...
 

Protected Attributes

EliminationSequenceStrategy_elimination_sequence_strategy {nullptr}
 the elimination sequence strategy used by the triangulation More...
 
JunctionTreeStrategy_junction_tree_strategy {nullptr}
 the junction tree strategy used by the triangulation More...
 
const NodeProperty< Size > * _domain_sizes {nullptr}
 the domain sizes of the variables/nodes of the graph More...
 

Constructors / Destructors

virtual StaticTriangulationnewFactory () const =0
 returns a fresh triangulation of the same type as the current object but over an empty graph More...
 
virtual StaticTriangulationcopyFactory () const =0
 virtual copy constructor More...
 
virtual ~StaticTriangulation ()
 destructor More...
 
 StaticTriangulation (const EliminationSequenceStrategy &elimSeq, const JunctionTreeStrategy &JTStrategy, bool minimality=false)
 default constructor: without any graph More...
 
 StaticTriangulation (const UndiGraph *graph, const NodeProperty< Size > *dom_sizes, const EliminationSequenceStrategy &elimSeq, const JunctionTreeStrategy &JTStrategy, bool minimality=false)
 constructor with a given graph More...
 
 StaticTriangulation (const StaticTriangulation &)
 forbid copy constructor except in newfactory More...
 
 StaticTriangulation (StaticTriangulation &&)
 forbid move constructor except in children's constructors More...
 

Accessors / Modifiers

virtual void setGraph (const UndiGraph *graph, const NodeProperty< Size > *domsizes)
 initialize the triangulation data structures for a new graph More...
 
const EdgeSetfillIns ()
 returns the fill-ins added by the triangulation algorithm More...
 
const std::vector< NodeId > & eliminationOrder ()
 returns an elimination ordering compatible with the triangulated graph More...
 
Idx eliminationOrder (const NodeId)
 returns the index of a given node in the elimination order (0 = first node eliminated) More...
 
const NodeProperty< NodeId > & reverseEliminationOrder ()
 returns a table indicating, for each node, at which step it was deleted by the triangulation process More...
 
const UndiGraphtriangulatedGraph ()
 returns the triangulated graph More...
 
const CliqueGrapheliminationTree ()
 returns the elimination tree of a compatible ordering More...
 
const CliqueGraphjunctionTree ()
 returns a compatible junction tree More...
 
NodeId createdJunctionTreeClique (const NodeId id)
 returns the Id of the clique of the junction tree created by the elimination of a given node during the triangulation process More...
 
const NodeProperty< NodeId > & createdJunctionTreeCliques ()
 returns the Ids of the cliques of the junction tree created by the elimination of the nodes More...
 
const CliqueGraphmaxPrimeSubgraphTree ()
 returns a junction tree of maximal prime subgraphs More...
 
NodeId createdMaxPrimeSubgraph (const NodeId id)
 returns the Id of the maximal prime subgraph created by the elimination of a given node during the triangulation process More...
 
void clear ()
 reinitialize the graph to be triangulated to an empty graph More...
 
void setMinimalRequirement (bool)
 sets/unset the minimality requirement More...
 
virtual bool isMinimalityRequired () const final
 indicates wether minimality is required More...
 
void setFillIns (bool)
 sets/unsets the record of the fill-ins in the standard triangulation procedure More...
 
const UndiGraphoriginalGraph () const
 returns the graph to be triangulated More...
 
EliminationSequenceStrategyeliminationSequenceStrategy () const
 returns the elimination sequence strategy used by the triangulation More...
 
JunctionTreeStrategyjunctionTreeStrategy () const
 returns the junction tree strategy used by the triangulation More...
 
virtual void _initTriangulation (UndiGraph &graph)
 the function called to initialize the triangulation process More...
 

Detailed Description

base class for all non-incremental triangulation methods

Definition at line 50 of file staticTriangulation.h.

Constructor & Destructor Documentation

◆ ~StaticTriangulation()

gum::StaticTriangulation::~StaticTriangulation ( )
virtual

destructor

Definition at line 153 of file staticTriangulation.cpp.

References _elimination_sequence_strategy, and _junction_tree_strategy.

153  {
154  // for debugging purposes
155  GUM_DESTRUCTOR(StaticTriangulation);
156 
159 
160  // no need to deallocate __original_graph nor __junction_tree because
161  // they are not owned by the static triangulation class
162  }
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
JunctionTreeStrategy * _junction_tree_strategy
the junction tree strategy used by the triangulation
StaticTriangulation(const EliminationSequenceStrategy &elimSeq, const JunctionTreeStrategy &JTStrategy, bool minimality=false)
default constructor: without any graph

◆ StaticTriangulation() [1/4]

gum::StaticTriangulation::StaticTriangulation ( const EliminationSequenceStrategy elimSeq,
const JunctionTreeStrategy JTStrategy,
bool  minimality = false 
)
protected

default constructor: without any graph

Parameters
elimSeqthe elimination sequence used to triangulate the graph
JTStrategythe junction tree strategy used to create junction trees from elimination trees
minimalitya Boolean indicating whether we should enforce that the triangulation is minimal w.r.t. inclusion

Definition at line 69 of file staticTriangulation.cpp.

References _junction_tree_strategy, and gum::JunctionTreeStrategy::setTriangulation().

72  :
73  _elimination_sequence_strategy(elimSeq.newFactory()),
74  _junction_tree_strategy(JTStrategy.newFactory()),
75  __minimality_required(minimality) {
76  // for debugging purposes
77  GUM_CONSTRUCTOR(StaticTriangulation);
78 
79  // register the triangulation to its junction tree strategy
81  }
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
JunctionTreeStrategy * _junction_tree_strategy
the junction tree strategy used by the triangulation
virtual void setTriangulation(StaticTriangulation *triangulation)=0
assigns the triangulation to the junction tree strategy
bool __minimality_required
indicates whether the triangulation must be minimal
StaticTriangulation(const EliminationSequenceStrategy &elimSeq, const JunctionTreeStrategy &JTStrategy, bool minimality=false)
default constructor: without any graph
+ Here is the call graph for this function:

◆ StaticTriangulation() [2/4]

gum::StaticTriangulation::StaticTriangulation ( const UndiGraph graph,
const NodeProperty< Size > *  dom_sizes,
const EliminationSequenceStrategy elimSeq,
const JunctionTreeStrategy JTStrategy,
bool  minimality = false 
)
protected

constructor with a given graph

Parameters
graphthe graph to be triangulated, i.e., the nodes of which will be eliminated
dom_sizesthe domain sizes of the nodes to be eliminated
elimSeqthe elimination sequence used to triangulate the graph
JTStrategythe junction tree strategy used to create junction trees
Warning
Note that we allow dom_sizes to be defined over nodes/variables that do not belong to graph. These sizes will simply be ignored. However, it is compulsory that all the nodes of graph belong to dom_sizes
Parameters
minimalitya Boolean indicating whether we should enforce that the triangulation is minimal w.r.t. inclusion
Warning
note that, by aGrUM's rule, the graph is not copied but only referenced by the triangulation algorithm.

Definition at line 41 of file staticTriangulation.cpp.

References __added_fill_ins, __elim_cliques, __elim_order, __node_2_max_prime_clique, __reverse_elim_order, _junction_tree_strategy, gum::JunctionTreeStrategy::setTriangulation(), and gum::NodeGraphPart::size().

46  :
47  Triangulation(domsizes),
48  _elimination_sequence_strategy(elimSeq.newFactory()),
49  _junction_tree_strategy(JTStrategy.newFactory()), __original_graph(theGraph),
50  __minimality_required(minimality) {
51  // for debugging purposes
52  GUM_CONSTRUCTOR(StaticTriangulation);
53 
54  // if the graph is not empty, resize several structures in order to speed-up
55  // their fillings.
56  if (theGraph != nullptr) {
57  __elim_order.resize(theGraph->size());
58  __reverse_elim_order.resize(theGraph->size());
59  __elim_cliques.resize(theGraph->size());
60  __node_2_max_prime_clique.resize(theGraph->size());
61  __added_fill_ins.resize(theGraph->size());
62  }
63 
64  // register the triangulation to its junction tree strategy
66  }
NodeProperty< NodeId > __node_2_max_prime_clique
indicates which clique of the max prime junction tree was created by the elmination of a given node (...
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
JunctionTreeStrategy * _junction_tree_strategy
the junction tree strategy used by the triangulation
NodeProperty< NodeId > __reverse_elim_order
the elimination order (access by NodeId)
std::vector< EdgeSet > __added_fill_ins
a vector containing the set of fill-ins added after each node elimination (used by recursive thinning...
virtual void setTriangulation(StaticTriangulation *triangulation)=0
assigns the triangulation to the junction tree strategy
NodeProperty< NodeSet > __elim_cliques
the cliques formed by the elimination of the nodes
Triangulation()
default constructor
bool __minimality_required
indicates whether the triangulation must be minimal
std::vector< NodeId > __elim_order
the order in which nodes are eliminated by the algorithm
StaticTriangulation(const EliminationSequenceStrategy &elimSeq, const JunctionTreeStrategy &JTStrategy, bool minimality=false)
default constructor: without any graph
+ Here is the call graph for this function:

◆ StaticTriangulation() [3/4]

gum::StaticTriangulation::StaticTriangulation ( const StaticTriangulation from)
protected

forbid copy constructor except in newfactory

Definition at line 84 of file staticTriangulation.cpp.

References __junction_tree, _elimination_sequence_strategy, _junction_tree_strategy, gum::JunctionTreeStrategy::copyFactory(), gum::EliminationSequenceStrategy::copyFactory(), and gum::JunctionTreeStrategy::junctionTree().

84  :
85  Triangulation(from), __original_graph(from.__original_graph),
86  __triangulated_graph(from.__triangulated_graph), __fill_ins(from.__fill_ins),
87  __elim_order(from.__elim_order),
88  __reverse_elim_order(from.__reverse_elim_order),
89  __elim_cliques(from.__elim_cliques), __elim_tree(from.__elim_tree),
90  __max_prime_junction_tree(from.__max_prime_junction_tree),
91  __node_2_max_prime_clique(from.__node_2_max_prime_clique),
92  __has_triangulation(from.__has_triangulation),
93  __has_triangulated_graph(from.__has_triangulated_graph),
94  __has_elimination_tree(from.__has_elimination_tree),
95  __has_junction_tree(from.__has_junction_tree),
96  __has_max_prime_junction_tree(from.__has_max_prime_junction_tree),
97  __has_fill_ins(from.__has_fill_ins),
98  __minimality_required(from.__minimality_required),
99  __added_fill_ins(from.__added_fill_ins),
100  __we_want_fill_ins(from.__we_want_fill_ins) {
101  // copy the strategies
103  from._elimination_sequence_strategy->copyFactory();
104  _junction_tree_strategy = from._junction_tree_strategy->copyFactory(this);
105 
106  // if from has a junction tree, copy it
107  if (from.__junction_tree != nullptr) {
109  }
110 
111  // for debugging purposes
112  GUM_CONS_CPY(StaticTriangulation);
113  }
virtual EliminationSequenceStrategy * copyFactory() const =0
virtual copy constructor
NodeProperty< NodeId > __node_2_max_prime_clique
indicates which clique of the max prime junction tree was created by the elmination of a given node (...
bool __has_max_prime_junction_tree
indicates whether a maximal prime subgraph junction tree has been constructed
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
bool __has_triangulated_graph
a boolean indicating whether we have constructed the triangulated graph
JunctionTreeStrategy * _junction_tree_strategy
the junction tree strategy used by the triangulation
UndiGraph __triangulated_graph
the triangulated graph
NodeProperty< NodeId > __reverse_elim_order
the elimination order (access by NodeId)
std::vector< EdgeSet > __added_fill_ins
a vector containing the set of fill-ins added after each node elimination (used by recursive thinning...
bool __has_triangulation
a boolean indicating whether we have parformed a triangulation
virtual JunctionTreeStrategy * copyFactory(StaticTriangulation *triangulation=nullptr) const =0
virtual copy constructor
bool __has_junction_tree
a boolean indicating whether the junction tree has been constructed
CliqueGraph __max_prime_junction_tree
the maximal prime subgraph junction tree computed from the junction tree
NodeProperty< NodeSet > __elim_cliques
the cliques formed by the elimination of the nodes
Triangulation()
default constructor
bool __we_want_fill_ins
a boolean indicating if we want fill-ins list with the standard triangulation method ...
bool __has_fill_ins
indicates whether we actually computed fill-ins
bool __minimality_required
indicates whether the triangulation must be minimal
const CliqueGraph * __junction_tree
the junction tree computed by the algorithm
bool __has_elimination_tree
a boolean indicating whether the elimination tree has been computed
EdgeSet __fill_ins
the fill-ins added during the whole triangulation process
virtual const CliqueGraph & junctionTree()=0
returns the junction tree computed
std::vector< NodeId > __elim_order
the order in which nodes are eliminated by the algorithm
CliqueGraph __elim_tree
the elimination tree computed by the algorithm
StaticTriangulation(const EliminationSequenceStrategy &elimSeq, const JunctionTreeStrategy &JTStrategy, bool minimality=false)
default constructor: without any graph
+ Here is the call graph for this function:

◆ StaticTriangulation() [4/4]

gum::StaticTriangulation::StaticTriangulation ( StaticTriangulation &&  from)
protected

forbid move constructor except in children's constructors

Definition at line 116 of file staticTriangulation.cpp.

References __junction_tree, _junction_tree_strategy, gum::JunctionTreeStrategy::junctionTree(), and gum::JunctionTreeStrategy::moveTriangulation().

116  :
117  Triangulation(std::move(from)),
118  _elimination_sequence_strategy(from._elimination_sequence_strategy),
119  _junction_tree_strategy(from._junction_tree_strategy),
120  __original_graph(from.__original_graph),
121  __triangulated_graph(std::move(from.__triangulated_graph)),
122  __fill_ins(std::move(from.__fill_ins)),
123  __elim_order(std::move(from.__elim_order)),
124  __reverse_elim_order(std::move(from.__reverse_elim_order)),
125  __elim_cliques(std::move(from.__elim_cliques)),
126  __elim_tree(std::move(from.__elim_tree)),
127  __max_prime_junction_tree(std::move(from.__max_prime_junction_tree)),
128  __node_2_max_prime_clique(std::move(from.__node_2_max_prime_clique)),
129  __has_triangulation(from.__has_triangulation),
130  __has_triangulated_graph(from.__has_triangulated_graph),
131  __has_elimination_tree(from.__has_elimination_tree),
132  __has_junction_tree(from.__has_junction_tree),
133  __has_max_prime_junction_tree(from.__has_max_prime_junction_tree),
134  __has_fill_ins(from.__has_fill_ins),
135  __minimality_required(from.__minimality_required),
136  __added_fill_ins(std::move(from.__added_fill_ins)),
137  __we_want_fill_ins(from.__we_want_fill_ins) {
138  // move the factories contained in from
139  from._elimination_sequence_strategy = new DefaultEliminationSequenceStrategy;
140  from._junction_tree_strategy = new DefaultJunctionTreeStrategy;
142 
143  // if from has a junction tree, copy it
144  if (from.__junction_tree != nullptr) {
146  }
147 
148  // for debugging purposes
149  GUM_CONS_MOV(StaticTriangulation);
150  }
NodeProperty< NodeId > __node_2_max_prime_clique
indicates which clique of the max prime junction tree was created by the elmination of a given node (...
bool __has_max_prime_junction_tree
indicates whether a maximal prime subgraph junction tree has been constructed
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
bool __has_triangulated_graph
a boolean indicating whether we have constructed the triangulated graph
JunctionTreeStrategy * _junction_tree_strategy
the junction tree strategy used by the triangulation
UndiGraph __triangulated_graph
the triangulated graph
NodeProperty< NodeId > __reverse_elim_order
the elimination order (access by NodeId)
std::vector< EdgeSet > __added_fill_ins
a vector containing the set of fill-ins added after each node elimination (used by recursive thinning...
bool __has_triangulation
a boolean indicating whether we have parformed a triangulation
bool __has_junction_tree
a boolean indicating whether the junction tree has been constructed
CliqueGraph __max_prime_junction_tree
the maximal prime subgraph junction tree computed from the junction tree
NodeProperty< NodeSet > __elim_cliques
the cliques formed by the elimination of the nodes
Triangulation()
default constructor
bool __we_want_fill_ins
a boolean indicating if we want fill-ins list with the standard triangulation method ...
bool __has_fill_ins
indicates whether we actually computed fill-ins
bool __minimality_required
indicates whether the triangulation must be minimal
const CliqueGraph * __junction_tree
the junction tree computed by the algorithm
bool __has_elimination_tree
a boolean indicating whether the elimination tree has been computed
EdgeSet __fill_ins
the fill-ins added during the whole triangulation process
virtual const CliqueGraph & junctionTree()=0
returns the junction tree computed
std::vector< NodeId > __elim_order
the order in which nodes are eliminated by the algorithm
virtual void moveTriangulation(StaticTriangulation *triangulation)
assigns a new triangulation to the junction tree strategy during a move construction ...
CliqueGraph __elim_tree
the elimination tree computed by the algorithm
StaticTriangulation(const EliminationSequenceStrategy &elimSeq, const JunctionTreeStrategy &JTStrategy, bool minimality=false)
default constructor: without any graph
+ Here is the call graph for this function:

Member Function Documentation

◆ __computeEliminationTree()

void gum::StaticTriangulation::__computeEliminationTree ( )
private

returns an elimination tree from a triangulated graph

Definition at line 337 of file staticTriangulation.cpp.

References __elim_cliques, __elim_order, __elim_tree, __has_elimination_tree, __has_triangulation, __original_graph, __reverse_elim_order, __triangulate(), gum::CliqueGraph::addEdge(), gum::CliqueGraph::addNode(), gum::NodeGraphPart::bound(), and gum::CliqueGraph::clear().

337  {
338  // if there already exists an elimination tree, no need to compute it again
339  if (__has_elimination_tree) return;
340 
341  // if the graph is not triangulated, triangulate it
343 
344  // create the nodes of the elimination tree
345  __elim_tree.clear();
346 
347  Size size = Size(__elim_order.size());
348  for (NodeId i = NodeId(0); i < size; ++i)
350 
351  // create the edges of the elimination tree: join a node to the one in
352  // its clique that is eliminated first
353  for (NodeId i = NodeId(0); i < size; ++i) {
354  NodeId clique_i_creator = __elim_order[i];
355  const NodeSet& list_of_nodes = __elim_cliques[clique_i_creator];
356  Idx child = __original_graph->bound() + 1;
357 
358  for (const auto node : list_of_nodes) {
359  Idx it_elim_step = __reverse_elim_order[node];
360 
361  if ((node != clique_i_creator) && (child > it_elim_step))
362  child = it_elim_step;
363  }
364 
365  if (child <= __original_graph->bound()) {
366  // WARNING: here, we assume that the nodes of the elimination tree are
367  // indexed from 0 to n-1
368  __elim_tree.addEdge(i, child);
369  }
370  }
371 
372  __has_elimination_tree = true;
373  }
NodeId addNode(const NodeSet &clique)
adds a new clique to the graph
void __triangulate()
the function that performs the triangulation
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
virtual void clear()
removes all the cliques and separators from the graph (as well as their adjacent edges) ...
NodeProperty< NodeId > __reverse_elim_order
the elimination order (access by NodeId)
bool __has_triangulation
a boolean indicating whether we have parformed a triangulation
virtual void addEdge(const NodeId first, const NodeId second)
inserts a new edge between two cliques
NodeProperty< NodeSet > __elim_cliques
the cliques formed by the elimination of the nodes
NodeId bound() const
returns a number n such that all node ids are strictly lower than n
bool __has_elimination_tree
a boolean indicating whether the elimination tree has been computed
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:48
std::vector< NodeId > __elim_order
the order in which nodes are eliminated by the algorithm
Size NodeId
Type for node ids.
Definition: graphElements.h:98
CliqueGraph __elim_tree
the elimination tree computed by the algorithm
+ Here is the call graph for this function:

◆ __computeMaxPrimeJunctionTree()

void gum::StaticTriangulation::__computeMaxPrimeJunctionTree ( )
private

computes the junction tree of the maximal prime subgraphs

Definition at line 410 of file staticTriangulation.cpp.

References __computeMaxPrimeMergings(), __has_junction_tree, __has_max_prime_junction_tree, __junction_tree, __max_prime_junction_tree, __node_2_max_prime_clique, _junction_tree_strategy, gum::CliqueGraph::addEdge(), gum::CliqueGraph::addNode(), gum::CliqueGraph::addToClique(), gum::CliqueGraph::clique(), gum::Set< Key, Alloc >::contains(), gum::JunctionTreeStrategy::createdCliques(), gum::EdgeGraphPart::edges(), gum::HashTable< Key, Val, Alloc >::insert(), junctionTree(), gum::NodeGraphPart::nodes(), and gum::NodeGraphPart::size().

410  {
411  // if there already exists a max prime junction tree, no need
412  // to recompute it
413  if (__has_max_prime_junction_tree) return;
414 
415  // if there is no junction tree, create it
417 
418  // the maximal prime subgraph join tree is created by aggregation of some
419  // cliques. More precisely, when the separator between 2 cliques is not
420  // complete in the original graph, then the two cliques must be merged.
421  // Create a hashtable indicating which clique has been absorbed by some
422  // other
423  // clique.
424  NodeProperty< NodeId > T_mpd_cliques(__junction_tree->size());
425 
426  for (const auto clik : __junction_tree->nodes())
427  T_mpd_cliques.insert(clik, clik);
428 
429  // parse all the separators of the junction tree and test those that are not
430  // complete in the orginal graph
431  std::vector< Arc > merged_cliques;
432 
433  NodeSet mark;
434 
435  for (const auto clik : __junction_tree->nodes())
436  if (!mark.contains(clik))
437  __computeMaxPrimeMergings(clik, clik, merged_cliques, mark);
438 
439  // compute the transitive closure of merged_cliques. This one will contain
440  // pairs (X,Y) indicating that clique X must be merged with clique Y.
441  // Actually clique X will be inserted into clique Y.
442  for (unsigned int i = 0; i < merged_cliques.size(); ++i) {
443  T_mpd_cliques[merged_cliques[i].tail()] =
444  T_mpd_cliques[merged_cliques[i].head()];
445  }
446 
447  // now we can create the max prime junction tree. First, create the cliques
448  for (const auto& elt : T_mpd_cliques)
449  if (elt.first == elt.second)
451  __junction_tree->clique(elt.second));
452 
453  // add to the cliques previously created the nodes of the cliques that were
454  // merged into them
455  for (const auto& elt : T_mpd_cliques)
456  if (elt.first != elt.second)
457  for (const auto node : __junction_tree->clique(elt.first)) {
458  try {
459  __max_prime_junction_tree.addToClique(elt.second, node);
460  } catch (DuplicateElement&) {}
461  }
462 
463  // add the edges to the graph
464  for (const auto& edge : __junction_tree->edges()) {
465  NodeId node1 = T_mpd_cliques[edge.first()];
466  NodeId node2 = T_mpd_cliques[edge.second()];
467 
468  if (node1 != node2) {
469  try {
470  __max_prime_junction_tree.addEdge(node1, node2);
471  } catch (DuplicateElement&) {}
472  }
473  }
474 
475  // compute for each node which clique of the max prime junction tree was
476  // created by the elimination of the node
477  const NodeProperty< NodeId >& node_2_junction_clique =
479 
480  for (const auto& elt : node_2_junction_clique)
481  __node_2_max_prime_clique.insert(elt.first, T_mpd_cliques[elt.second]);
482 
484  }
const CliqueGraph & junctionTree()
returns a compatible junction tree
NodeId addNode(const NodeSet &clique)
adds a new clique to the graph
virtual const NodeProperty< NodeId > & createdCliques()=0
returns, for each node, the clique of the junction tree which was created by its deletion ...
NodeProperty< NodeId > __node_2_max_prime_clique
indicates which clique of the max prime junction tree was created by the elmination of a given node (...
bool __has_max_prime_junction_tree
indicates whether a maximal prime subgraph junction tree has been constructed
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
Size size() const
alias for sizeNodes
JunctionTreeStrategy * _junction_tree_strategy
the junction tree strategy used by the triangulation
const EdgeSet & edges() const
returns the set of edges stored within the EdgeGraphPart
virtual void addToClique(const NodeId clique_id, const NodeId node_id)
changes the set of nodes included into a given clique and returns the new set
bool __has_junction_tree
a boolean indicating whether the junction tree has been constructed
CliqueGraph __max_prime_junction_tree
the maximal prime subgraph junction tree computed from the junction tree
const NodeGraphPart & nodes() const
return *this as a NodeGraphPart
virtual void addEdge(const NodeId first, const NodeId second)
inserts a new edge between two cliques
const NodeSet & clique(const NodeId idClique) const
returns the set of nodes included into a given clique
const CliqueGraph * __junction_tree
the junction tree computed by the algorithm
void __computeMaxPrimeMergings(const NodeId node, const NodeId from, std::vector< Arc > &merged_cliques, NodeSet &mark) const
used for computing the junction tree of the maximal prime subgraphs
Size NodeId
Type for node ids.
Definition: graphElements.h:98
+ Here is the call graph for this function:

◆ __computeMaxPrimeMergings()

void gum::StaticTriangulation::__computeMaxPrimeMergings ( const NodeId  node,
const NodeId  from,
std::vector< Arc > &  merged_cliques,
NodeSet mark 
) const
private

used for computing the junction tree of the maximal prime subgraphs

Definition at line 376 of file staticTriangulation.cpp.

References __junction_tree, __original_graph, gum::Set< Key, Alloc >::begin(), gum::Set< Key, Alloc >::end(), gum::EdgeGraphPart::existsEdge(), gum::EdgeGraphPart::neighbours(), and gum::CliqueGraph::separator().

Referenced by __computeMaxPrimeJunctionTree().

380  {
381  mark << node;
382 
383  for (const auto other_node : __junction_tree->neighbours(node))
384  if (other_node != from) {
385  const NodeSet& separator = __junction_tree->separator(node, other_node);
386  // check that the separator between node and other_node is complete
387  bool complete = true;
388 
389  for (auto iter_sep1 = separator.begin();
390  iter_sep1 != separator.end() && complete;
391  ++iter_sep1) {
392  auto iter_sep2 = iter_sep1;
393 
394  for (++iter_sep2; iter_sep2 != separator.end(); ++iter_sep2) {
395  if (!__original_graph->existsEdge(*iter_sep1, *iter_sep2)) {
396  complete = false;
397  break;
398  }
399  }
400  }
401 
402  // here complete indicates whether the separator is complete or not
403  if (!complete) merged_cliques.push_back(Arc(other_node, node));
404 
405  __computeMaxPrimeMergings(other_node, node, merged_cliques, mark);
406  }
407  }
const NodeSet & separator(const Edge &edge) const
returns the separator included in a given edge
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
const NodeSet & neighbours(const NodeId id) const
returns the set of edges adjacent to a given node
bool existsEdge(const Edge &edge) const
indicates whether a given edge exists
const CliqueGraph * __junction_tree
the junction tree computed by the algorithm
void __computeMaxPrimeMergings(const NodeId node, const NodeId from, std::vector< Arc > &merged_cliques, NodeSet &mark) const
used for computing the junction tree of the maximal prime subgraphs
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ __computeRecursiveThinning()

void gum::StaticTriangulation::__computeRecursiveThinning ( )
private

removes redondant fill-ins and compute proper elimination cliques and order

Definition at line 195 of file staticTriangulation.cpp.

References __added_fill_ins, __elim_cliques, __elim_order, __fill_ins, __has_fill_ins, __reverse_elim_order, __triangulated_graph, gum::Set< Key, Alloc >::erase(), gum::PriorityQueueImplementation< Val, Priority, Cmp, Alloc, Gen >::insert(), gum::Set< Key, Alloc >::insert(), gum::HashTable< Key, Val, Alloc >::insert(), and gum::NodeGraphPart::size().

Referenced by __triangulate().

195  {
196  // apply recursive thinning (fmint, see Kjaerulff (90), "triangulation of
197  // graphs - algorithms giving small total state space")
198  NodeId node1, node2;
199  bool incomplete;
200  std::vector< NodeId > adj;
201  EdgeSet T_prime;
202  NodeProperty< unsigned int > R(__triangulated_graph.size());
203 
204  for (const auto node : __triangulated_graph)
205  R.insert(node, 0);
206 
207  // the FMINT loop
208  if (__added_fill_ins.size() > 0) {
209  for (auto iter = __added_fill_ins.rbegin(); iter != __added_fill_ins.rend();
210  ++iter) {
211  if (iter->size()) {
212  // here apply MINT to T_i = __added_fill_ins[i]
213  EdgeSet& T = *iter;
214 
215  // compute R: by default, R is equal to all the nodes in the graph
216  // when R[...] >= j (see the j in the loop below), this means that the
217  // node belongs to an extremal edge in R
218  for (std::size_t k = 0; k < __elim_order.size(); ++k)
219  R[__elim_order[k]] =
220  0; // WARNING: do not replace R[__elim_order[k]] by
221 
222  // R[k] because the node ids may not be
223  // consecutive numbers
224 
225  // apply MINT while some edges can possibly be deleted
226  bool require_mint = true;
227 
228  for (unsigned int j = 0; require_mint; ++j) {
229  // find T' (it is equal to the edges (v,w) of T such that
230  // the intersection of adj(v,G) and adj(w,G) is complete and such
231  // that
232  // v and/or w belongs to an extremal node in R
233  for (const auto& edge : T) {
234  node1 = edge.first();
235  node2 = edge.second();
236 
237  // check if at least one extremal node belongs to R
238  if ((R[node1] < j) && (R[node2] < j)) continue;
239 
240  // check if the intersection of adj(v,G) and adj(w,G) is a
241  // complete subgraph
242  if (__triangulated_graph.neighbours(node2).size()
243  < __triangulated_graph.neighbours(node1).size()) {
244  NodeId tmp = node1;
245  node1 = node2;
246  node2 = tmp;
247  }
248 
249  incomplete = false;
250 
251  // find the nodes belonging to the intersection of adj(v,G)
252  // and adj(w,G)
253  for (const auto adjnode : __triangulated_graph.neighbours(node1))
254  if (__triangulated_graph.existsEdge(node2, adjnode))
255  adj.push_back(adjnode);
256 
257  // check if the intersection is complete
258  for (unsigned int k = 0; k < adj.size() && !incomplete; ++k) {
259  for (unsigned int m = k + 1; m < adj.size(); ++m) {
260  if (!__triangulated_graph.existsEdge(adj[k], adj[m])) {
261  incomplete = true;
262  break;
263  }
264  }
265  }
266 
267  adj.clear();
268 
269  if (!incomplete) {
270  T_prime.insert(edge);
271  R[node1] = j + 1;
272  R[node2] = j + 1;
273  }
274  }
275 
276  // compute the new value of T (i.e. T\T') and update the
277  // triangulated graph
278  for (const auto& edge : T_prime) {
279  T.erase(edge);
280  __triangulated_graph.eraseEdge(edge);
281 
282  if (__has_fill_ins) __fill_ins.erase(edge);
283  }
284 
285  if (T_prime.size() == 0) require_mint = false;
286 
287  T_prime.clear();
288  }
289  }
290  }
291  }
292 
293  // here, the recursive thinning has removed all the superfluous edges.
294  // Hence some cliques have been split and, as a result, the elimination
295  // order has changed. We should thus compute a new perfect ordering. To
296  // do so, we use a Maximal Cardinality Search: it has indeed the nice
297  // property that, when the graph is already triangulated, it finds a
298  // compatible order of elimination that does not require any edge addition
299 
300  // a structure storing the number of neighbours previously processed
301  PriorityQueue< NodeId, unsigned int, std::greater< unsigned int > >
302  numbered_neighbours(std::greater< unsigned int >(),
303  __triangulated_graph.size());
304 
305  for (Size i = 0; i < __elim_order.size(); ++i)
306  numbered_neighbours.insert(__elim_order[i], 0);
307 
308  // perform the maximum cardinality search
309  if (__elim_order.size() > 0) {
310  for (Size i = Size(__elim_order.size()); i >= 1; --i) {
311  NodeId ni = NodeId(i - 1);
312  NodeId node = numbered_neighbours.pop();
313  __elim_order[ni] = node;
314  __reverse_elim_order[node] = ni;
315 
316  for (const auto neighbour : __triangulated_graph.neighbours(node)) {
317  try {
318  numbered_neighbours.setPriority(
319  neighbour, 1 + numbered_neighbours.priority(neighbour));
320  } catch (NotFound&) {}
321  }
322  }
323  }
324 
325  // here the elimination order is ok. We now need to update the
326  // __elim_cliques
327  for (Size i = 0; i < __elim_order.size(); ++i) {
328  NodeSet& cliques = __elim_cliques.insert(__elim_order[i], NodeSet()).second;
329  cliques << __elim_order[i];
330 
331  for (const auto neighbour : __triangulated_graph.neighbours(__elim_order[i]))
332  if (__reverse_elim_order[neighbour] > i) cliques << neighbour;
333  }
334  }
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
Size size() const
alias for sizeNodes
void erase(const Key &k)
Erases an element from the set.
Definition: set_tpl.h:656
UndiGraph __triangulated_graph
the triangulated graph
NodeProperty< NodeId > __reverse_elim_order
the elimination order (access by NodeId)
std::vector< EdgeSet > __added_fill_ins
a vector containing the set of fill-ins added after each node elimination (used by recursive thinning...
Set< Edge > EdgeSet
Some typdefs and define for shortcuts ...
NodeProperty< NodeSet > __elim_cliques
the cliques formed by the elimination of the nodes
bool __has_fill_ins
indicates whether we actually computed fill-ins
std::size_t Size
In aGrUM, hashed values are unsigned long int.
Definition: types.h:48
EdgeSet __fill_ins
the fill-ins added during the whole triangulation process
std::vector< NodeId > __elim_order
the order in which nodes are eliminated by the algorithm
Size NodeId
Type for node ids.
Definition: graphElements.h:98
void insert(const Key &k)
Inserts a new element into the set.
Definition: set_tpl.h:613
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ __triangulate()

void gum::StaticTriangulation::__triangulate ( )
private

the function that performs the triangulation

Definition at line 554 of file staticTriangulation.cpp.

References __added_fill_ins, __computeRecursiveThinning(), __elim_cliques, __elim_order, __fill_ins, __has_fill_ins, __has_triangulated_graph, __has_triangulation, __minimality_required, __original_graph, __reverse_elim_order, __triangulated_graph, __we_want_fill_ins, _elimination_sequence_strategy, _initTriangulation(), gum::UndiGraph::addEdge(), gum::EliminationSequenceStrategy::askFillIns(), gum::Set< Key, Alloc >::begin(), gum::EliminationSequenceStrategy::eliminationUpdate(), gum::Set< Key, Alloc >::end(), gum::UndiGraph::eraseNode(), gum::EdgeGraphPart::existsEdge(), gum::Set< Key, Alloc >::insert(), gum::EdgeGraphPart::neighbours(), gum::EliminationSequenceStrategy::nextNodeToEliminate(), gum::EliminationSequenceStrategy::providesFillIns(), gum::EliminationSequenceStrategy::providesGraphUpdate(), gum::Set< Key, Alloc >::resize(), gum::NodeGraphPart::size(), and gum::Set< Key, Alloc >::size().

Referenced by __computeEliminationTree(), fillIns(), and triangulatedGraph().

554  {
555  // if the graph is already triangulated, no need to triangulate it again
556  if (__has_triangulation) return;
557 
558  // copy the graph to be triangulated, so that we can modify it
559  UndiGraph tmp_graph = *__original_graph;
560 
561  _initTriangulation(tmp_graph);
563 
564  // if we are to do recursive thinning, we will have to add fill-ins to the
565  // triangulated graph each time we eliminate a node. Hence, we shall
566  // initialize the triangulated graph by a copy of the original graph
567  if (__minimality_required) {
570  }
571 
572  // perform the triangulation
573  NodeId removable_node = 0;
574 
575  for (unsigned int nb_elim = 0; tmp_graph.size() != 0; ++nb_elim) {
577 
578  // when minimality is not required, i.e., we won't apply recursive
579  // thinning, the cliques sets can be computed
580  if (!__minimality_required) {
581  NodeSet& cliques = __elim_cliques.insert(removable_node, NodeSet()).second;
582  cliques.resize(tmp_graph.neighbours(removable_node).size() / 2);
583  cliques << removable_node;
584  for (const auto clik : tmp_graph.neighbours(removable_node))
585  cliques << clik;
586  } else {
587  // here recursive thinning will be applied, hence we need store the
588  // fill-ins added by the current node removal
589  EdgeSet& current_fill = __added_fill_ins[nb_elim];
590  NodeId node1, node2;
591 
592  const NodeSet& nei = tmp_graph.neighbours(removable_node);
593 
594  for (auto iter_edges1 = nei.begin(); iter_edges1 != nei.end();
595  ++iter_edges1) {
596  node1 = *iter_edges1;
597  auto iter_edges2 = iter_edges1;
598 
599  for (++iter_edges2; iter_edges2 != nei.end(); ++iter_edges2) {
600  node2 = *iter_edges2;
601  Edge edge(node1, node2);
602 
603  if (!tmp_graph.existsEdge(edge)) {
604  current_fill.insert(edge);
605  __triangulated_graph.addEdge(node1, node2);
606  }
607  }
608  }
609  }
610 
611  // if we want fill-ins but the elimination sequence strategy does not
612  // compute them, we shall compute them here
615  NodeId node1, node2;
616 
617  // add edges between removable_node's neighbours in order to create
618  // a clique
619  const NodeSet& nei = tmp_graph.neighbours(removable_node);
620 
621  for (auto iter_edges1 = nei.begin(); iter_edges1 != nei.end();
622  ++iter_edges1) {
623  node1 = *iter_edges1;
624  auto iter_edges2 = iter_edges1;
625 
626  for (++iter_edges2; iter_edges2 != nei.end(); ++iter_edges2) {
627  node2 = *iter_edges2;
628  Edge edge(node1, node2);
629 
630  if (!tmp_graph.existsEdge(edge)) { __fill_ins.insert(edge); }
631  }
632  }
633 
634  // delete removable_node and its adjacent edges
635  tmp_graph.eraseNode(removable_node);
636  }
637 
638  // inform the elimination sequence that we are actually removing
639  // removable_node (this enables, for instance, to update the weights of
640  // the nodes in the graph)
642 
644  NodeId node1, node2;
645 
646  const NodeSet& nei = tmp_graph.neighbours(removable_node);
647 
648  for (auto iter_edges1 = nei.begin(); iter_edges1 != nei.end();
649  ++iter_edges1) {
650  node1 = *iter_edges1;
651  auto iter_edges2 = iter_edges1;
652 
653  for (++iter_edges2; iter_edges2 != nei.end(); ++iter_edges2) {
654  node2 = *iter_edges2;
655  Edge edge(node1, node2);
656 
657  if (!tmp_graph.existsEdge(edge)) { tmp_graph.addEdge(node1, node2); }
658  }
659  }
660 
661  tmp_graph.eraseNode(removable_node);
662  }
663 
664  // update the elimination order
665  __elim_order[nb_elim] = removable_node;
666  __reverse_elim_order.insert(removable_node, nb_elim);
667  }
668 
669  // indicate whether we actually computed fill-ins
671 
672  // if minimality is required, remove the redondant edges
674 
675  __has_triangulation = true;
676  }
virtual void eliminationUpdate(const NodeId node)
performs all the graph/fill-ins updates provided (if any)
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
virtual void _initTriangulation(UndiGraph &graph)
the function called to initialize the triangulation process
virtual void addEdge(const NodeId first, const NodeId second)
insert a new edge into the undirected graph
Definition: undiGraph_inl.h:35
bool __has_triangulated_graph
a boolean indicating whether we have constructed the triangulated graph
UndiGraph __triangulated_graph
the triangulated graph
NodeProperty< NodeId > __reverse_elim_order
the elimination order (access by NodeId)
std::vector< EdgeSet > __added_fill_ins
a vector containing the set of fill-ins added after each node elimination (used by recursive thinning...
Set< Edge > EdgeSet
Some typdefs and define for shortcuts ...
bool __has_triangulation
a boolean indicating whether we have parformed a triangulation
virtual bool providesGraphUpdate() const =0
indicates whether the elimination sequence updates by itself the graph after a node has been eliminat...
virtual NodeId nextNodeToEliminate()=0
returns the new node to be eliminated within the triangulation algorithm
NodeProperty< NodeSet > __elim_cliques
the cliques formed by the elimination of the nodes
bool __we_want_fill_ins
a boolean indicating if we want fill-ins list with the standard triangulation method ...
bool __has_fill_ins
indicates whether we actually computed fill-ins
bool __minimality_required
indicates whether the triangulation must be minimal
EdgeSet __fill_ins
the fill-ins added during the whole triangulation process
void __computeRecursiveThinning()
removes redondant fill-ins and compute proper elimination cliques and order
std::vector< NodeId > __elim_order
the order in which nodes are eliminated by the algorithm
Size NodeId
Type for node ids.
Definition: graphElements.h:98
void insert(const Key &k)
Inserts a new element into the set.
Definition: set_tpl.h:613
virtual bool providesFillIns() const =0
indicates whether the fill-ins generated by the eliminated nodes, if needed, will be computed by the ...
virtual void askFillIns(bool do_it)=0
if the elimination sequence is able to compute fill-ins, we indicate whether we want this feature to ...
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ _initTriangulation()

void gum::StaticTriangulation::_initTriangulation ( UndiGraph graph)
protectedvirtual

the function called to initialize the triangulation process

This function is called when the triangulation process starts and is used to initialize the elimination sequence strategy. Actually, the graph that is modified by the triangulation algorithm is a copy of the original graph, and this copy needs be known by the elimination sequence strategy. _initTriangulation is used to transmit this knowledge to the elimination sequence (through method setGraph of the elimination sequence class).

Parameters
graphthe very graph that is triangulated (this is a copy of __original_graph)

Reimplemented in gum::PartialOrderedTriangulation, and gum::OrderedTriangulation.

Definition at line 733 of file staticTriangulation.cpp.

References gum::Triangulation::_domain_sizes, _elimination_sequence_strategy, and gum::EliminationSequenceStrategy::setGraph().

Referenced by __triangulate().

733  {
735  }
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
const NodeProperty< Size > * _domain_sizes
the domain sizes of the variables/nodes of the graph
virtual bool setGraph(UndiGraph *graph, const NodeProperty< Size > *dom_sizes)
sets a new graph to be triangulated
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ clear()

void gum::StaticTriangulation::clear ( )
virtual

reinitialize the graph to be triangulated to an empty graph

Implements gum::Triangulation.

Definition at line 165 of file staticTriangulation.cpp.

References __added_fill_ins, __elim_cliques, __elim_order, __elim_tree, __fill_ins, __has_elimination_tree, __has_fill_ins, __has_junction_tree, __has_max_prime_junction_tree, __has_triangulated_graph, __has_triangulation, __junction_tree, __max_prime_junction_tree, __node_2_max_prime_clique, __original_graph, __reverse_elim_order, __triangulated_graph, _elimination_sequence_strategy, _junction_tree_strategy, gum::JunctionTreeStrategy::clear(), gum::CliqueGraph::clear(), gum::EliminationSequenceStrategy::clear(), gum::UndiGraph::clear(), and gum::Set< Key, Alloc >::clear().

Referenced by setGraph().

165  {
166  // clear the factories
169 
170  // remove the current graphs
171  __original_graph = nullptr;
172  __junction_tree = nullptr;
174  __elim_tree.clear();
176  __elim_cliques.clear();
178 
179  // remove all fill-ins and orderings
180  __fill_ins.clear();
181  __added_fill_ins.clear();
182  __elim_order.clear();
183  __reverse_elim_order.clear();
184 
185  // indicates that the junction tree, the max prime tree, etc, are updated
186  __has_triangulation = true;
188  __has_elimination_tree = true;
189  __has_junction_tree = true;
191  __has_fill_ins = true;
192  }
virtual void clear()
clears the sequence (to prepare, for instance, a new elimination sequence)
virtual void clear()
removes all the nodes and edges from the graph
Definition: undiGraph_inl.h:43
NodeProperty< NodeId > __node_2_max_prime_clique
indicates which clique of the max prime junction tree was created by the elmination of a given node (...
bool __has_max_prime_junction_tree
indicates whether a maximal prime subgraph junction tree has been constructed
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
bool __has_triangulated_graph
a boolean indicating whether we have constructed the triangulated graph
virtual void clear()
removes all the cliques and separators from the graph (as well as their adjacent edges) ...
JunctionTreeStrategy * _junction_tree_strategy
the junction tree strategy used by the triangulation
UndiGraph __triangulated_graph
the triangulated graph
NodeProperty< NodeId > __reverse_elim_order
the elimination order (access by NodeId)
std::vector< EdgeSet > __added_fill_ins
a vector containing the set of fill-ins added after each node elimination (used by recursive thinning...
bool __has_triangulation
a boolean indicating whether we have parformed a triangulation
virtual void clear()=0
resets the current junction tree strategy data structures
bool __has_junction_tree
a boolean indicating whether the junction tree has been constructed
CliqueGraph __max_prime_junction_tree
the maximal prime subgraph junction tree computed from the junction tree
NodeProperty< NodeSet > __elim_cliques
the cliques formed by the elimination of the nodes
bool __has_fill_ins
indicates whether we actually computed fill-ins
const CliqueGraph * __junction_tree
the junction tree computed by the algorithm
bool __has_elimination_tree
a boolean indicating whether the elimination tree has been computed
void clear()
Removes all the elements, if any, from the set.
Definition: set_tpl.h:375
EdgeSet __fill_ins
the fill-ins added during the whole triangulation process
std::vector< NodeId > __elim_order
the order in which nodes are eliminated by the algorithm
CliqueGraph __elim_tree
the elimination tree computed by the algorithm
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ copyFactory()

virtual StaticTriangulation* gum::StaticTriangulation::copyFactory ( ) const
pure virtual

virtual copy constructor

note that we return a pointer as it enables subclasses to return pointers to their types, not Triangulation pointers. See item 25 of the more effective C++.

Implements gum::Triangulation.

Implemented in gum::PartialOrderedTriangulation, gum::OrderedTriangulation, gum::DefaultTriangulation, and gum::UnconstrainedTriangulation.

◆ createdJunctionTreeClique()

NodeId gum::StaticTriangulation::createdJunctionTreeClique ( const NodeId  id)
virtual

returns the Id of the clique of the junction tree created by the elimination of a given node during the triangulation process

Implements gum::Triangulation.

◆ createdJunctionTreeCliques()

const NodeProperty< NodeId >& gum::StaticTriangulation::createdJunctionTreeCliques ( )
virtual

returns the Ids of the cliques of the junction tree created by the elimination of the nodes

Implements gum::Triangulation.

◆ createdMaxPrimeSubgraph()

NodeId gum::StaticTriangulation::createdMaxPrimeSubgraph ( const NodeId  id)
virtual

returns the Id of the maximal prime subgraph created by the elimination of a given node during the triangulation process

Implements gum::Triangulation.

◆ domainSizes()

const NodeProperty< Size >* gum::Triangulation::domainSizes ( ) const
inherited

returns the domain sizes of the variables of the graph to be triangulated

◆ eliminationOrder() [1/2]

◆ eliminationOrder() [2/2]

Idx gum::StaticTriangulation::eliminationOrder ( const NodeId  )
virtual

returns the index of a given node in the elimination order (0 = first node eliminated)

Implements gum::Triangulation.

◆ eliminationSequenceStrategy()

EliminationSequenceStrategy& gum::StaticTriangulation::eliminationSequenceStrategy ( ) const

returns the elimination sequence strategy used by the triangulation

◆ eliminationTree()

const CliqueGraph& gum::StaticTriangulation::eliminationTree ( )
virtual

returns the elimination tree of a compatible ordering

Implements gum::Triangulation.

Referenced by gum::DefaultJunctionTreeStrategy::__computeJunctionTree().

+ Here is the caller graph for this function:

◆ fillIns()

const EdgeSet & gum::StaticTriangulation::fillIns ( )
virtual

returns the fill-ins added by the triangulation algorithm

Implements gum::Triangulation.

Definition at line 679 of file staticTriangulation.cpp.

References __fill_ins, __has_fill_ins, __has_junction_tree, __has_triangulation, __junction_tree, __original_graph, __triangulate(), __we_want_fill_ins, _elimination_sequence_strategy, gum::CliqueGraph::clique(), gum::EdgeGraphPart::existsEdge(), gum::EliminationSequenceStrategy::fillIns(), gum::Set< Key, Alloc >::insert(), junctionTree(), gum::NodeGraphPart::nodes(), gum::EliminationSequenceStrategy::providesFillIns(), and gum::Set< Key, Alloc >::size().

679  {
680  // if we did not compute the triangulation yet, do it and commpute
681  // the fill-ins at the same time
682  if (!__has_triangulation) {
683  bool want_fill_ins = __we_want_fill_ins;
684  __we_want_fill_ins = true;
685  __triangulate();
686  __we_want_fill_ins = want_fill_ins;
687  __has_fill_ins = true;
688  }
689 
690  // here, we already computed a triangulation and we already computed
691  // the fill-ins, so return them
692  if (__has_fill_ins) {
695  else
696  return __fill_ins;
697  } else {
698  // ok, here, we shall compute the fill-ins as they were not precomputed
699  if (!__original_graph) return __fill_ins;
700 
701  // just in case, be sure that the junction tree has been constructed
703 
704  for (const auto clik_id : __junction_tree->nodes()) {
705  // for each clique, add the edges necessary to make it complete
706  const NodeSet& clique = __junction_tree->clique(clik_id);
707  std::vector< NodeId > clique_nodes(clique.size());
708  unsigned int i = 0;
709 
710  for (const auto node : clique) {
711  clique_nodes[i] = node;
712  i += 1;
713  }
714 
715  for (i = 0; i < clique_nodes.size(); ++i) {
716  for (unsigned int j = i + 1; j < clique_nodes.size(); ++j) {
717  Edge edge(clique_nodes[i], clique_nodes[j]);
718 
719  if (!__original_graph->existsEdge(edge)) {
720  try {
721  __fill_ins.insert(edge);
722  } catch (DuplicateElement&) {}
723  }
724  }
725  }
726  }
727 
728  return __fill_ins;
729  }
730  }
const CliqueGraph & junctionTree()
returns a compatible junction tree
virtual const EdgeSet & fillIns()
in case fill-ins are provided, this function returns the fill-ins due to all the nodes eliminated so ...
void __triangulate()
the function that performs the triangulation
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
EliminationSequenceStrategy * _elimination_sequence_strategy
the elimination sequence strategy used by the triangulation
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
bool __has_triangulation
a boolean indicating whether we have parformed a triangulation
bool __has_junction_tree
a boolean indicating whether the junction tree has been constructed
bool existsEdge(const Edge &edge) const
indicates whether a given edge exists
const NodeGraphPart & nodes() const
return *this as a NodeGraphPart
const NodeSet & clique(const NodeId idClique) const
returns the set of nodes included into a given clique
bool __we_want_fill_ins
a boolean indicating if we want fill-ins list with the standard triangulation method ...
bool __has_fill_ins
indicates whether we actually computed fill-ins
const CliqueGraph * __junction_tree
the junction tree computed by the algorithm
EdgeSet __fill_ins
the fill-ins added during the whole triangulation process
void insert(const Key &k)
Inserts a new element into the set.
Definition: set_tpl.h:613
virtual bool providesFillIns() const =0
indicates whether the fill-ins generated by the eliminated nodes, if needed, will be computed by the ...
+ Here is the call graph for this function:

◆ isMinimalityRequired()

virtual bool gum::StaticTriangulation::isMinimalityRequired ( ) const
finalvirtual

indicates wether minimality is required

◆ junctionTree()

const CliqueGraph& gum::StaticTriangulation::junctionTree ( )
virtual

returns a compatible junction tree

Implements gum::Triangulation.

Referenced by __computeMaxPrimeJunctionTree(), fillIns(), and triangulatedGraph().

+ Here is the caller graph for this function:

◆ junctionTreeStrategy()

JunctionTreeStrategy& gum::StaticTriangulation::junctionTreeStrategy ( ) const

returns the junction tree strategy used by the triangulation

◆ maxLog10CliqueDomainSize()

double gum::Triangulation::maxLog10CliqueDomainSize ( )
inherited

returns the max of log10DomainSize of the cliques in the junction tree.

This is usefull for instance to estimate the complexity (both in space and in time) of the inference that will use the junction tree.

This method is not 'const' since it can be called before building any junction tree and hence it needs to build it...

Definition at line 70 of file triangulation.cpp.

References gum::Triangulation::_domain_sizes, and gum::Triangulation::junctionTree().

Referenced by gum::MaxInducedWidthMCBayesNetGenerator< GUM_SCALAR, ICPTGenerator, ICPTDisturber >::__checkConditions().

70  {
71  double res = 0.0;
72  double dSize;
73  const JunctionTree& jt = junctionTree(); // here, the fact that we get
74  // a junction tree ensures that _domain_sizes is different from nullptr
75 
76  for (const NodeId cl : jt) {
77  dSize = 0.0;
78 
79  for (const auto node : jt.clique(cl))
80  dSize += std::log10((*_domain_sizes)[node]);
81 
82  if (res < dSize) res = dSize;
83  }
84 
85  return res;
86  }
const NodeProperty< Size > * _domain_sizes
the domain sizes of the variables/nodes of the graph
CliqueGraph JunctionTree
a junction tree is a clique graph satisfying the running intersection property and such that no cliqu...
Definition: cliqueGraph.h:302
virtual const CliqueGraph & junctionTree()=0
returns a compatible junction tree
Size NodeId
Type for node ids.
Definition: graphElements.h:98
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ maxPrimeSubgraphTree()

const CliqueGraph& gum::StaticTriangulation::maxPrimeSubgraphTree ( )
virtual

returns a junction tree of maximal prime subgraphs

Warning
Actually, the cliques of the junction tree are guarranteed to be maximal prime subgraph of the original graph that was triangulated only if the triangulation performed is minimal (in the sense that removing any edge in the triangulated graph results in a nontriangulated graph). This can be ensured by requiring minimality of the triangulation.

Implements gum::Triangulation.

◆ newFactory()

virtual StaticTriangulation* gum::StaticTriangulation::newFactory ( ) const
pure virtual

returns a fresh triangulation of the same type as the current object but over an empty graph

note that we return a pointer as it enables subclasses to return pointers to their types, not Triangulation pointers. See item 25 of the more effective C++.

Implements gum::Triangulation.

Implemented in gum::PartialOrderedTriangulation, gum::OrderedTriangulation, gum::DefaultTriangulation, and gum::UnconstrainedTriangulation.

◆ operator=()

StaticTriangulation& gum::StaticTriangulation::operator= ( const StaticTriangulation )
private

forbid copy operator

◆ originalGraph()

const UndiGraph* gum::StaticTriangulation::originalGraph ( ) const

returns the graph to be triangulated

Warning
if we have not set yet a graph, then originalGraph () will return a nullptr.

Referenced by gum::DefaultJunctionTreeStrategy::copyFactory().

+ Here is the caller graph for this function:

◆ reverseEliminationOrder()

const NodeProperty< NodeId >& gum::StaticTriangulation::reverseEliminationOrder ( )

returns a table indicating, for each node, at which step it was deleted by the triangulation process

◆ setFillIns()

void gum::StaticTriangulation::setFillIns ( bool  )

sets/unsets the record of the fill-ins in the standard triangulation procedure

◆ setGraph()

void gum::StaticTriangulation::setGraph ( const UndiGraph graph,
const NodeProperty< Size > *  domsizes 
)
virtual

initialize the triangulation data structures for a new graph

Parameters
graphthe graph to be triangulated, i.e., the nodes of which will be eliminated
domsizesthe domain sizes of the nodes to be eliminated
Warning
Note that we allow domsizes to be defined over nodes/variables that do not belong to graph. These sizes will simply be ignored. However, it is compulsory that all the nodes of graph belong to dom_sizes
the graph is not copied but only referenced by the elimination sequence algorithm.

Implements gum::Triangulation.

Reimplemented in gum::PartialOrderedTriangulation, and gum::OrderedTriangulation.

Definition at line 526 of file staticTriangulation.cpp.

References __added_fill_ins, __elim_cliques, __elim_order, __has_elimination_tree, __has_fill_ins, __has_junction_tree, __has_max_prime_junction_tree, __has_triangulated_graph, __has_triangulation, __node_2_max_prime_clique, __original_graph, __reverse_elim_order, gum::Triangulation::_domain_sizes, clear(), and gum::NodeGraphPart::size().

Referenced by gum::OrderedTriangulation::setGraph(), and gum::PartialOrderedTriangulation::setGraph().

527  {
528  // remove the old graph
529  clear();
530 
531  if (graph != nullptr) {
532  // prepare the size of the data for the new graph
533  __elim_order.resize(graph->size());
534  __reverse_elim_order.resize(graph->size());
535  __elim_cliques.resize(graph->size());
536  __added_fill_ins.resize(graph->size());
537  __node_2_max_prime_clique.resize(graph->size());
538  }
539 
540  // keep track of the variables passed in argument
541  __original_graph = graph;
542  _domain_sizes = domsizes;
543 
544  // indicate that no triangulation was performed for this graph
545  __has_triangulation = false;
546  __has_triangulated_graph = false;
547  __has_elimination_tree = false;
548  __has_junction_tree = false;
550  __has_fill_ins = false;
551  }
void clear()
reinitialize the graph to be triangulated to an empty graph
NodeProperty< NodeId > __node_2_max_prime_clique
indicates which clique of the max prime junction tree was created by the elmination of a given node (...
bool __has_max_prime_junction_tree
indicates whether a maximal prime subgraph junction tree has been constructed
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
bool __has_triangulated_graph
a boolean indicating whether we have constructed the triangulated graph
NodeProperty< NodeId > __reverse_elim_order
the elimination order (access by NodeId)
std::vector< EdgeSet > __added_fill_ins
a vector containing the set of fill-ins added after each node elimination (used by recursive thinning...
const NodeProperty< Size > * _domain_sizes
the domain sizes of the variables/nodes of the graph
bool __has_triangulation
a boolean indicating whether we have parformed a triangulation
bool __has_junction_tree
a boolean indicating whether the junction tree has been constructed
NodeProperty< NodeSet > __elim_cliques
the cliques formed by the elimination of the nodes
bool __has_fill_ins
indicates whether we actually computed fill-ins
bool __has_elimination_tree
a boolean indicating whether the elimination tree has been computed
std::vector< NodeId > __elim_order
the order in which nodes are eliminated by the algorithm
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ setMinimalRequirement()

void gum::StaticTriangulation::setMinimalRequirement ( bool  )

sets/unset the minimality requirement

◆ triangulatedGraph()

const UndiGraph & gum::StaticTriangulation::triangulatedGraph ( )
virtual

returns the triangulated graph

Implements gum::Triangulation.

Definition at line 487 of file staticTriangulation.cpp.

References __has_junction_tree, __has_triangulated_graph, __has_triangulation, __junction_tree, __original_graph, __triangulate(), __triangulated_graph, gum::UndiGraph::addEdge(), junctionTree(), and gum::Set< Key, Alloc >::size().

487  {
489 
490  // if we did not construct the triangulated graph during the triangulation,
491  // that is, we just constructed the junction tree, we shall construct it now
493  // just in case, be sure that the junction tree has been constructed
495 
496  // copy the original graph
498 
499  for (const auto clik_id : *__junction_tree) {
500  // for each clique, add the edges necessary to make it complete
501  const NodeSet& clique = __junction_tree->clique(clik_id);
502  std::vector< NodeId > clique_nodes(clique.size());
503  unsigned int i = 0;
504 
505  for (const auto node : clique) {
506  clique_nodes[i] = node;
507  i += 1;
508  }
509 
510  for (i = 0; i < clique_nodes.size(); ++i) {
511  for (unsigned int j = i + 1; j < clique_nodes.size(); ++j) {
512  try {
513  __triangulated_graph.addEdge(clique_nodes[i], clique_nodes[j]);
514  } catch (DuplicateElement&) {}
515  }
516  }
517  }
518 
520  }
521 
522  return __triangulated_graph;
523  }
const CliqueGraph & junctionTree()
returns a compatible junction tree
void __triangulate()
the function that performs the triangulation
Set< NodeId > NodeSet
Some typdefs and define for shortcuts ...
const UndiGraph * __original_graph
a pointer to the (external) original graph (which will be triangulated)
virtual void addEdge(const NodeId first, const NodeId second)
insert a new edge into the undirected graph
Definition: undiGraph_inl.h:35
bool __has_triangulated_graph
a boolean indicating whether we have constructed the triangulated graph
UndiGraph __triangulated_graph
the triangulated graph
bool __has_triangulation
a boolean indicating whether we have parformed a triangulation
bool __has_junction_tree
a boolean indicating whether the junction tree has been constructed
const CliqueGraph * __junction_tree
the junction tree computed by the algorithm
+ Here is the call graph for this function:

Member Data Documentation

◆ __added_fill_ins

std::vector< EdgeSet > gum::StaticTriangulation::__added_fill_ins
private

a vector containing the set of fill-ins added after each node elimination (used by recursive thinning)

Definition at line 296 of file staticTriangulation.h.

Referenced by __computeRecursiveThinning(), __triangulate(), clear(), setGraph(), and StaticTriangulation().

◆ __elim_cliques

NodeProperty< NodeSet > gum::StaticTriangulation::__elim_cliques
private

the cliques formed by the elimination of the nodes

Definition at line 254 of file staticTriangulation.h.

Referenced by __computeEliminationTree(), __computeRecursiveThinning(), __triangulate(), clear(), setGraph(), and StaticTriangulation().

◆ __elim_order

std::vector< NodeId > gum::StaticTriangulation::__elim_order
private

the order in which nodes are eliminated by the algorithm

Definition at line 248 of file staticTriangulation.h.

Referenced by __computeEliminationTree(), __computeRecursiveThinning(), __triangulate(), clear(), setGraph(), and StaticTriangulation().

◆ __elim_tree

CliqueGraph gum::StaticTriangulation::__elim_tree
private

the elimination tree computed by the algorithm

Definition at line 257 of file staticTriangulation.h.

Referenced by __computeEliminationTree(), and clear().

◆ __fill_ins

EdgeSet gum::StaticTriangulation::__fill_ins
private

the fill-ins added during the whole triangulation process

Definition at line 245 of file staticTriangulation.h.

Referenced by __computeRecursiveThinning(), __triangulate(), clear(), and fillIns().

◆ __has_elimination_tree

bool gum::StaticTriangulation::__has_elimination_tree {false}
private

a boolean indicating whether the elimination tree has been computed

Definition at line 279 of file staticTriangulation.h.

Referenced by __computeEliminationTree(), clear(), and setGraph().

◆ __has_fill_ins

bool gum::StaticTriangulation::__has_fill_ins {false}
private

indicates whether we actually computed fill-ins

Definition at line 289 of file staticTriangulation.h.

Referenced by __computeRecursiveThinning(), __triangulate(), clear(), fillIns(), and setGraph().

◆ __has_junction_tree

bool gum::StaticTriangulation::__has_junction_tree {false}
private

a boolean indicating whether the junction tree has been constructed

Definition at line 282 of file staticTriangulation.h.

Referenced by __computeMaxPrimeJunctionTree(), clear(), fillIns(), setGraph(), and triangulatedGraph().

◆ __has_max_prime_junction_tree

bool gum::StaticTriangulation::__has_max_prime_junction_tree {false}
private

indicates whether a maximal prime subgraph junction tree has been constructed

Definition at line 286 of file staticTriangulation.h.

Referenced by __computeMaxPrimeJunctionTree(), clear(), and setGraph().

◆ __has_triangulated_graph

bool gum::StaticTriangulation::__has_triangulated_graph {false}
private

a boolean indicating whether we have constructed the triangulated graph

Definition at line 276 of file staticTriangulation.h.

Referenced by __triangulate(), clear(), setGraph(), and triangulatedGraph().

◆ __has_triangulation

bool gum::StaticTriangulation::__has_triangulation {false}
private

a boolean indicating whether we have parformed a triangulation

Definition at line 273 of file staticTriangulation.h.

Referenced by __computeEliminationTree(), __triangulate(), clear(), fillIns(), setGraph(), and triangulatedGraph().

◆ __junction_tree

const CliqueGraph* gum::StaticTriangulation::__junction_tree {nullptr}
private

the junction tree computed by the algorithm

note that the junction tree is owned by the junctionTreeStrategy and, therefore, its deletion from memory is not handled by the static triangulation class.

Definition at line 263 of file staticTriangulation.h.

Referenced by __computeMaxPrimeJunctionTree(), __computeMaxPrimeMergings(), clear(), fillIns(), StaticTriangulation(), and triangulatedGraph().

◆ __max_prime_junction_tree

CliqueGraph gum::StaticTriangulation::__max_prime_junction_tree
private

the maximal prime subgraph junction tree computed from the junction tree

Definition at line 266 of file staticTriangulation.h.

Referenced by __computeMaxPrimeJunctionTree(), and clear().

◆ __minimality_required

bool gum::StaticTriangulation::__minimality_required {false}
private

indicates whether the triangulation must be minimal

Definition at line 292 of file staticTriangulation.h.

Referenced by __triangulate().

◆ __node_2_max_prime_clique

NodeProperty< NodeId > gum::StaticTriangulation::__node_2_max_prime_clique
private

indicates which clique of the max prime junction tree was created by the elmination of a given node (the key of the table)

Definition at line 270 of file staticTriangulation.h.

Referenced by __computeMaxPrimeJunctionTree(), clear(), setGraph(), and StaticTriangulation().

◆ __original_graph

const UndiGraph* gum::StaticTriangulation::__original_graph {nullptr}
private

a pointer to the (external) original graph (which will be triangulated)

Definition at line 239 of file staticTriangulation.h.

Referenced by __computeEliminationTree(), __computeMaxPrimeMergings(), __triangulate(), clear(), fillIns(), setGraph(), and triangulatedGraph().

◆ __reverse_elim_order

NodeProperty< NodeId > gum::StaticTriangulation::__reverse_elim_order
private

the elimination order (access by NodeId)

Definition at line 251 of file staticTriangulation.h.

Referenced by __computeEliminationTree(), __computeRecursiveThinning(), __triangulate(), clear(), setGraph(), and StaticTriangulation().

◆ __triangulated_graph

UndiGraph gum::StaticTriangulation::__triangulated_graph
private

the triangulated graph

Definition at line 242 of file staticTriangulation.h.

Referenced by __computeRecursiveThinning(), __triangulate(), clear(), and triangulatedGraph().

◆ __we_want_fill_ins

bool gum::StaticTriangulation::__we_want_fill_ins {false}
private

a boolean indicating if we want fill-ins list with the standard triangulation method

Definition at line 300 of file staticTriangulation.h.

Referenced by __triangulate(), and fillIns().

◆ _domain_sizes

const NodeProperty< Size >* gum::Triangulation::_domain_sizes {nullptr}
protectedinherited

◆ _elimination_sequence_strategy

◆ _junction_tree_strategy

JunctionTreeStrategy* gum::StaticTriangulation::_junction_tree_strategy {nullptr}
protected

The documentation for this class was generated from the following files: